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Abstract

The maximum flow problem is one of the most fundamental problems in network op-

timization. To date, the most efficient algorithm in theory and practice has been the

push-relabel algorithm of Goldberg and Tarjan. Recently, Hochbaum introduced an al-

gorithm with comparable complexity—the pseudoflow algorithm. Prior to this work, its

practical performance had been unknown.

Both the pseudoflow and push-relabel algorithms can efficiently solve a specific type

of parametric maximum flow problem described by Gallo, Grigoiadis, and Tarjan where

the capacities of the source and sink arcs vary monotonically based on a single parameter

value. Both algorithms can solve a parametric instance with a series of parameter values

with the same worst-case complexity as a single run. The empirical performance of these

algorithms has not previously been studied.

A unique feature of the pseudoflow algorithm is that it can also work with more

general variations of the arc capacities. The capacities of any arc in the graph can vary,

independent of a parameter. The pseudoflow algorithm supports a warm start technique

whereby the solution from one problem instance is used as a starting point for the solution

to the next instance.

This work provides a detailed study of the performance of implementations of the

pseudoflow, push-relabel, and Dinic algorithms using a wide range of problem instances,

including both common synthetic instances and application data. First, we present per-

formance comparisons with single instances of maximum flow problems. We also discuss

the effects of the large number of heuristics available on the pseudoflow solver. Next, we

study the practical performance of the first implementations of the parametric pseudoflow

and push-relabel solvers. Finally, we study the performance of the warm start pseudoflow

solver.



Chapter 1

Introduction

The maximum flow problem is one of the most fundamental problems in network opti-

mization that arises in a wide variety of applications. Due to its applicability, numerous

algorithms have been developed to solve it. These algorithms can be divided into two

major classes: feasible flow algorithms and preflow algorithms. Feasible flow algorithms

increase the flow at each step along augmenting paths, and they maintain a feasible flow

at each step. Preflow algorithms permit the inflow of a node to exceed the outflow during

the intermediate steps of the algorithm. The pseudoflow algorithm of Hochbaum [Hoc97]

differs distinctly from feasible flow and preflow algorithms in that it works with pseud-

oflows. The pseudoflow algorithm removes constraints on the inflow and outflow of a node

so that the inflow may exceed the outflow, or the outflow may exceed the inflow. This

flexibility leads to many heuristics that allow the implementation to be tuned to various

types of problems.

Prior to the pseudoflow algorithm, the most efficient algorithm in theory and practice

has been the push-relabel algorithm [CG95b], which is a preflow algorithm. Numerous au-

thors implemented the push-relabel algorithm, and various heuristics and techniques were

developed to maximize its performance. Before this work, the practical performance of the

pseudoflow algorithm has been untested. We compare the performance of the pseudoflow

algorithm to the push-relabel algorithm (the best preflow algorithm) and Dinic’s algorithm

(the best feasible flow algorithm). We evaluate its practicality on a set of common bench-

mark problem instances (the DIMACS problems), as well as some application instances.

We also investigate many heuristics made possible by the flexibility of the pseudoflow

1
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algorithm.

In a specific parametric form of the maximum flow problem, the capacities of the arcs

out of the source and into the sink are monotone functions of a single parameter. Gallo,

Grigoiadis, and Tarjan [GGT89] showed how the push-relabel algorithm could be used

to solve parametric maximum flow problems efficiently with the same complexity as a

single run of the push-relabel algorithm. Hochbaum [Hoc97] showed how the pseudoflow

algorithm can also be used to solve the parametric maximum flow problem with the

complexity of a single run. We test implementations of the parametric algorithms for

both push-relabel and pseudoflow.

A unique feature of the pseudoflow algorithm is that it can use any pseudoflow to

initialize the algorithm. In particular, a previous solution to a related problem may be

used. We developed a warm start technique that uses the solution from one instance as

a starting point for the next instance. This allows the capacities of the arcs in a series

of related problems to vary arbitrarily—i.e., the variations are not restricted to simple

parametric variations.

In this dissertation, we present the maximum flow problem and outline some algorithms

for solving it. We present the pseudoflow algorithm in some detail. The bulk of this work

focuses on the performance of implementations of the pseudoflow algorithm compared

to the push-relabel algorithm. We also compare the performance of the pseudoflow and

push-relabel algorithms for solving the parametric maximum flow problem. Finally, we

examine the viability of the warm start technique for the pseudoflow algorithm. A detailed

description of the contributions of this dissertation can be found in Section 1.5.

1.1 Definitions

Let G = (V,A) be a directed network with nodes V and arcs A. We denote the number

of nodes as n and the number of arcs as m. There are two distinguished nodes in the

network: the source node s and the sink node t.

For a node i, we call the set of all nodes j such that (i, j) ∈ A or (j, i) ∈ A the

neighbors of i. An arc (u, v) of unspecified direction is referred to as edge [u, v]. We say

that [u, v] ∈ A if (u, v) ∈ A or (v, u) ∈ A.
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A directed path from v1 to vk, denoted (v1, v2, . . . , vk), is an ordered sequence of distinct

nodes such that (v1, v2), . . . , (vk−1, vk) ∈ A. A u-v path is a directed path from u to v.

[v1, v2, . . . , vk] denotes an undirected path from v1 to vk where [v1, v2], . . . , [vk−1, vk] ∈ A.

1.1.1 Maximum Flow Problem

For each arc (u, v) in the graph, we associate a finite, non-negative capacity, c(u, v). Let

us assume that every node v is on some directed path from s to t. This implies that

m ≥ n− 1. Let us also assume that if (u, v) ∈ A, then (v, u) 6∈ A.

We can state the generic maximum flow problem as follows:

Maximize v

subject to:
∑

j:(i,j)∈A

f(i, j)−
∑

j:(j,i)∈A

f(j, i) =











v if i = s
−v if i = t
0 if i ∈ V \ {s, t}

0 ≤ f(i, j) ≤ c(i, j) ∀(i, j) ∈ A

It is well known (e.g., [AMO93]) that without loss of generality, the maximum flow

problem can be generalized and reformulated to include variations such as non-zero lower

bounds on the arcs.

A vector f of values f(i, j), (i, j) ∈ A, that meets the constraints is called a feasible

flow. The first set of equality constraints is called the flow conservation constraints. The

second set of inequality constraints is called the capacity constraints. The scalar v is called

the value of the flow.

A preflow is a vector f that meets the capacity constraints with a weakened form of

the flow conservation constraints:
∑

j:(j,i)∈A f(j, i) −∑

j:(i,j)∈A f(i, j) ≥ 0 for all nodes i

except the source and sink. A pseudoflow is a vector f that only satisfies the capacity

constraints.

The excess of a node i with respect to a given vector f is defined as ef (i) =
∑

j:(j,i)∈A f(j, i)−
∑

j:(i,j)∈A f(i, j). A excess with a negative value is referred to as a deficit.

1.1.2 Residual Graph

Let us define a residual graph with respect to a graph G and a pseudoflow f as follows.

We replace each arc (u, v) in the original network with two arcs (u, v) and (v, u). The
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arcs each have a residual capacity: rf (u, v) = c(u, v)− f(u, v) and rf (v, u) = f(u, v). The

residual network with respect to a network G and a pseudoflow f (written Gf ) is the

network with capacities rf that contains only arcs with positive residual capacity. An

augmenting path in Gf is a simple, directed s-t path in Gf .

1.1.3 Minimum Cut

Given a partition of the nodes in V into two sets S and T , a cut is the set of arcs with one

endpoint in S and the other in T , and we write this as (S, T ). An s-t cut is a cut such

that s ∈ S, and t ∈ T . S is referred to as the source set of the s-t cut, and T is referred

to as the sink set of the s-t cut.

Given a flow f , the value of a flow across a cut is the net flow of the arcs from nodes

in S to nodes in T—i.e., f(S, T ) =
∑

(u,v)∈(S,T ) f(u, v)−
∑

(v,u)∈(T,S) f(v, u). Similarly, the

capacity of a cut is c(S, T ) =
∑

(u,v)∈(S,T ) c(u, v).

A minimum s-t cut is an s-t cut with minimum capacity. Each graph contains at least

one such cut, but there may be more than one cut with minimum value.

The connection between the maximum flow and the minimum cut was established

by Ford and Fulkerson [FF56]. The maximum-flow minimum cut theorem says that the

maximum possible value of an s-t flow is equal to the minimum capacity of all possible s-t

cuts. It is well known (e.g., [AMO93]) that given a maximum flow it is easy to obtain a

minimum cut. So, the minimum cut problem can be solved by first solving the maximum

flow problem—see Section 1.2 for examples.

1.2 Applications

Part of the reason that the maximum flow problem has been such a popular area of

research is that there is a large number of applications that can be formulated and solved

via maximum flow or minimum cut. Below is a sample list of applications:

• Danzig and Fulkerson [DF54] modeled tanker scheduling as a maximum flow prob-

lem, where the object is to ship perishable goods between several origin-destination

pairs using the fewest number of ships subject to delivery dates.
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• Levien and Aiken [LA98] showed how to model and analyze the trust metric of a

certificate chain used in public-key certification as a maximum flow problem.

• Stone [Sto78] discussed the problem of assigning program modules or subroutines

to processors in a two-processor computer system. The goal is to minimize the

communication between processors.

• Johnson and Walz [JW86] applied a maximum flow technique to the set of type

constraints in programming language compilers in order to identify the most likely

source of type errors. This can be used to generate error messages or to recommend

alternative types.

• Chase and Garg [CG95a] discussed detecting predicates or conditions in distributed

systems. The general problem is NP-complete, but they showed how bounded sum

predicates can be detected using a maximum flow formulation.

• Johnson [Joh68] formulated the open pit mining problem as a minimum cut problem,

where the objective is to determine the optimal contour of an open pit mine, subject

to precedence constraints on the blocks that must be removed.

• Federgruen and Groenevelt [FG86] modeled the problem of scheduling jobs on uni-

form parallel machines as a maximum flow problem. In this problem there is a set of

jobs and a set of uniform machines to carry out the jobs. Each job has a processing

time requirement, and jobs can be preempted. The objective is to find a feasible

schedule for the jobs or show that none exists.

• Another scheduling problem was described by Möhring et al. [MSSU03]. The prob-

lem consists of a series of jobs to be scheduled over a series of time periods, and

there are precedence relationships between the jobs. The authors used minimum cut

as a subroutine in a Lagrangian relaxation solution technique. (See Section 3.4.2.7

for details.)

• Wong and Yang [YW94] presented a heuristic to solve the two-way, balanced par-

titioning (bipartitioning) problem, which is NP-complete. The problem arises in
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VLSI design, where the objective is to partition a circuit into two balanced compo-

nents while minimizing the number of crossing nets (sets of edges in the cut). Their

heuristic solves a sequence of minimum s-t cut problems.

• Goldschmidt and Hochbaum [GH94] presented another partitioning problem where

the objective is to partition an edge-weighted graph into k non-empty components

such that the total edge weights between components is minimum. This problem

is NP-complete for arbitrary values of k. For a fixed value of k, they presented a

polynomial time algorithm that enumerates minimum cuts.

• Eisner and Severence [ES76] developed a model for segmenting a large, shared

database between primary and secondary memory. This is solved with a series

of minimum cut problems.

• Hochbaum and Pathria [HP97] described two forest-harvesting problems where the

forest area is partitioned into cells. Benefit is derived from harvesting a cell, and

either a penalty is paid for harvesting an adjacent cell or a benefit is derived from

creating a border between harvested cells and unharvested cells.

Interested readers should see Ahuja, Magnanti, and Orlin [AMO93] for a more exten-

sive list of applications.

1.3 A Brief History of Algorithms for Maximum Flow

In this section, we look at the progression of algorithms over the last five decades to solve

the maximum flow problem. The list is far from complete. Rather, it is a survey of

significant algorithms that introduced new ways of solving the problem and that typically

ran faster than previous algorithms.

For each algorithm, we provide a brief outline of the algorithm and its complexity. For

more detailed presentations, the reader should consult the references.

1.3.1 Ford and Fulkerson—1956

Ford and Fulkerson’s algorithm [FF56] is the first algorithm for solving the maximum

flow problem. It is based on the idea of sending flow along augmenting paths in the
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residual graph. Once an s-t path P = (s, v1, v2, . . . , vk, t) ∈ Gf is identified, as much flow

as possible is pushed along the path. The amount of the flow is the minimum residual

capacity of the arcs in the path—i.e., δ = min{rf (u, v) : (u, v) ∈ P}. An arc (u, v) with

residual capacity δ is known as a bottleneck arc (note that there may be more than one

arc with residual capacity δ). After pushing δ units along P , all of the bottleneck arcs

will be saturated—i.e., they will have residual capacity of zero in that direction.

To identify the augmenting path, we can use any search technique from the source

that visits each node at most once (e.g., depth-first or breadth-first search). This requires

O(m) operations because we scan each residual arc at most once. Augmenting along the

path requires O(n) operations. If we assume that the arc capacities are integral, and the

maximum capacity of any arc is U , then the maximum value of the flow is nU . Each

augmentation sends at least one unit of flow. Therefore, the worst case complexity is

O(nmU), which is pseudo-polynomial because it depends on U .

1.3.2 Edmonds and Karp—1972

Edmonds and Karp [EK72] improved on Ford-Fulkerson by choosing the shortest aug-

menting path (expressed in number of arcs) along which to send flow. Before each aug-

mentation, the algorithm performs a breadth-first search in the residual graph from the

source to identify the shortest path from the source to the sink.

Each augmentation saturates at least one arc. It can be shown that during the execu-

tion of the algorithm, an arc (u, v) can be saturated at most O(n) times because between

two successive saturations of (u, v), the distance from s to t in the residual graph must

increase by at least two units, and the maximum distance is n. Since each augmentation

saturates at least one arc, there can be at most O(mn) augmentations.1 Each iteration

requires O(m) operations to perform the breadth-first search to identify the shortest aug-

menting path and O(n) operations to augment along the shortest path. The complexity

of each iteration is O(m). Therefore, the overall complexity is O(nm2), which is no longer

dependent on the maximum capacity of an arc in the graph. This was the first strongly

polynomial algorithm for the maximum flow problem.

1Edmonds and Karp state this result as O(n3) augmentations because they assume the number of arcs
is O(n2)—i.e., they do not use a separate variable for the number of arcs.
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1.3.3 Dinic—1970

Dinic’s algorithm [Din70] augments along shortest paths, but it does so without recom-

puting the shortest path distances after each augmentation. Rather, it augments along all

paths of a specific length. It does this by constructing a series of layered networks. A lay-

ered network is constructed from the residual graph by labeling each node v with the exact

shortest path distance from v to t in Gf . This distance is denoted Df (v). Then, the net-

work is pruned to remove all arcs (u, v) that do not meet the condition Df (u) = Df (v)+1.

In this network, all paths from s to t are shortest paths with the same length, Df (s). This

is called a layered network because if the nodes are partitioned into sets Li such that all

nodes in Li have labels Df (v) = i, then all arcs in the network (u, v) are such that u ∈ Li

and v ∈ Li−1. The sets of nodes Li are called layers. Note that this network is clearly

acyclic.

A flow in a layered network such that there is no augmenting path from s to t is called

a blocking flow. A blocking flow is a maximum flow in a given layered network, but it is

not necessarily a maximum flow in the original network.

The algorithm augments flow along s-t paths in the layered network until no aug-

menting path remains. The flow at this stage is a blocking flow. Although the algorithm

updates the residual capacities of the arcs in the layered network after each augmentation,

it does not immediately update the residual capacities of the reverse arcs in the residual

graph (which are not present in the layered network) nor does it update the shortest path

distances of the nodes. Each augmentation requires time O(n) because no path is longer

than n. There are at most O(m) augmentations in a given layered network because each

augmentation saturates at least one arc. Then another layered network is constructed

from the new residual graph, and the process is repeated. There can be at most O(n)

layered networks because the longest path from s to t contains n− 1 arcs. Therefore, the

overall complexity is O(n2m). Malhotra, Kumar, and Maheshwari [MKM78] developed a

variant of Dinic’s algorithm that has complexity O(n3).
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1.3.4 Karzanov—1974

Karzanov [Kar74] also used the concept of layered networks; however, the Karzanov algo-

rithm was the first that was not an augmenting path algorithm.2 Instead, it uses preflows.

The Karzanov algorithm is divided into phases, each of which establishes a blocking

flow in a layered network. During each phase, the algorithm works with preflows. At the

end of a phase and at the end of the entire algorithm, the flow is feasible.

During a phase, the algorithm processes all nodes in a layer with two procedures:

advance and balance. Advance pushes excess from all the nodes in a layer to the next layer

(closer to the sink), and continues pushing the excess through the layers until the excess

reaches the sink or there is no outlet for it.

Balance returns excess from all nodes in a single layer to the previous layer by canceling

a subset of the flows into the nodes with positive excess. It only pushes the excess back

one layer, which differs from advance, which pushes through as many layers as possible.

Once a node is balanced, the node is marked as blocked so that advance will not push any

more excess into the node during the current phase. Therefore, balance can be called at

most n− 2 times in a phase.

Each phase consists of alternating applications of advance and balance, so both oper-

ations are performed at most n − 2 times. During each application of advance, there are

at most O(n) non-saturating pushes, because there is only one partially saturated arc per

node. Therefore, the total number of non-saturating pushes during the phase is O(n2).

The algorithm establishes a maximum flow in a layered network in O(n2) operations.

There are O(n) layered networks, so the overall complexity is O(n3).

1.3.5 Goldberg (push-relabel)—1985

Goldberg [Gol85] presented another preflow algorithm, but it does not use layered net-

works. Instead, flow is pushed from nodes with excess individually, rather than treating

them in groups (e.g., layers). With each node v we associate a node label, which is

a non-negative integer denoted d(v). The labels are valid if d(s) = n, d(t) = 0, and

d(v) ≤ d(w)+1 for every residual arc (v, w). If d(v) < n, then the label represents a lower

2The source for Karzanov’s paper [Kar74] is translated from Russian. A good presentation of the
algorithm, written in English, can be found in Even [Eve78].
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bound on the distance from v to t in the residual graph, and if d(v) ≥ n, then d(v)− n is

a lower bound on the distance from v back to the source in Gf [GT88].

The algorithm begins by saturating all arcs out of the source. Any node with positive

excess is called an active node, so all nodes adjacent to the source are initially active. The

algorithm applies two operations on active nodes: push and relabel. Push sends excess out

of a node to its neighbors along residual arcs such that the neighbor has a label one less

than the node. If excess cannot be pushed out of a node along such a residual arc, relabel

increases the label of the node to another valid value.

The algorithm continues applying push and relabel until it establishes a maximum

flow. This basic framework leads to a family of related algorithms known by a number

of names including push-relabel, preflow-push, Goldberg’s, and Goldberg-Tarjan. The

generic algorithm does not specify any order on the push and relabel operations and can

be shown (Goldberg [Gol85]) to run in time O(n2m).

Goldberg and Tarjan [GT88] presented variants with improved complexity. Using a

first-in, first-out (FIFO) queue for the active nodes, the algorithm runs in time O(n3),

matching Karzanov’s algorithm [Kar74]. With the use of dynamic trees [ST83], the run-

ning time of the FIFO algorithm is improved to O(mn log(n2/m)).

Goldberg and Tarjan recommended additional node selection heuristics without sug-

gesting that they would improve on the complexity of the generic algorithm. These include

selecting the active node with the largest excess and using a last-in, first-out (LIFO) stack

for the active nodes. Goldberg and Tarjan also suggested selecting the active node with

the highest label. This was later shown by Cheriyan and Maheshwari [CM89] to have

complexity O(n2√m).

There are two heuristics which are common in implementations of the push-relabel

algorithm. The global relabeling heuristic was suggested by Goldberg [Gol85, GT88] to

improve performance by periodically updating the labels of nodes in the graph based on

their distance to the sink in the residual graph. The second, the gap relabeling heuristic,

was discovered independently by Derigs and Meier [DM89] and by Cherkassky [Che79], as

well as Ahuja and Orlin [AO91]. The heuristic identifies nodes known to be in the source

set of the minimum cut and raises their labels to n.
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1.3.6 Hochbaum—1997

Hochbaum [Hoc97] presented the pseudoflow algorithm for maximum flow motivated by

an algorithm of Lerchs and Grossmann [LG65] that solves the maximum closure problem.

The algorithm works with pseudoflows rather than flows or preflows. We present a generic

algorithm and a number of variants in the next chapter. The complexity of the best

variants of the pseudoflow algorithm is O(mn logn).

1.3.7 Summary

The complexity of the algorithms described is summarized below:

Algorithm Complexity

Ford and Fulkerson [FF56] O(nmU)

Edmonds and Karp [EK72] O(nm2)

Dinic [Din70] O(n2m)

Karzanov [Kar74] O(n3)

Goldberg and Tarjan [GT88] O(mn log(n2/m))

Hochbaum [Hoc97] O(mn logn)

1.4 Recent Maximum Flow Implementations

In this dissertation, we are primarily concerned with the performance of the pseudoflow

algorithm. Recent papers describing previous maximum flow implementations established

push-relabel as the fastest algorithm in practice. Therefore, we will focus on comparing

the pseudoflow algorithm to the push-relabel algorithm. The results of some of these

implementation papers are summarized below—more details can be found in Section 3.1.

The paper of Derigs and Meier [DM89] was one of the earliest to compare the perfor-

mance of push-relabel to Dinic’s algorithm, which had previously been regarded as the

best in practice. The authors concluded that push-relabel is superior to Dinic’s algorithm.

The highest label variant of push-relabel was generally the best.

Anderson and Setubal [AS93] compared the push-relabel algorithm to Dinic’s algorithm

and implemented older algorithms including Ford-Fulkerson, Karp and Edmonds, and

Karzanov. They confirmed that push-relabel was superior to all other algorithms.

Badics and Boros [BB93] made aggressive use of theoretical techniques and data struc-

tures (e.g., dynamic trees) and compared the results to simpler implementations. They
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found the simple FIFO implementation to be superior in most cases.

Goldberg and Cherkassky [CG95b] implemented Dinic’s algorithm and several variants

of push-relabel. Their implementations of both algorithms were faster than any previous

implementations, so we used their implementations as the baseline for our experiments in

Chapter 3.

Ahuja, Kodialam, Mishra, and Orlin [AKMO97] studied a number of algorithms in-

cluding variants of their own capacity scaling algorithm. They confirmed the results of

other authors: the highest label push-relabel algorithm is generally the fastest in practice.

1.5 Contributions

The contributions of this work include:

1. Development of the highest-label pseudoflow algorithm, which is faster in practice

than the lowest-label pseudoflow algorithm presented by Hochbaum [Hoc97].

2. Experimental results of the first implementations of the pseudoflow family of al-

gorithms for the maximum flow problem: lowest-label, highest-label, and simplex

pseudoflow algorithms.

3. Investigation of heuristics for the pseudoflow algorithm. Some of these are described

by Hochbaum [Hoc97]. Others, such as using exact distance labels and the early

termination rule, are new in this work.

4. Experimental results of the first implementations of the parametric pseudoflow al-

gorithm and parametric push-relabel algorithms.

5. A warm start pseudoflow algorithm for solving a sequence of maximum flow prob-

lems with the same nodes and arcs, where the capacities vary arbitrarily and are not

functions of a parameter. We also present experimental results of our implementa-

tion.
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1.6 Organization of the Dissertation

In the next chapter, we present the pseudoflow family of algorithms. We describe three

different algorithms and a number of heuristics that we explored during our implementa-

tion.

Chapter 3 contains the result of our experimental studies. We compare the performance

of our implementation of the pseudoflow algorithms to the best known implementations

of the push-relabel algorithm and Dinic’s algorithm.

In Chapter 4, we consider a type of parametric analysis for maximum flow graphs that

was first proposed for the push-relabel algorithm by Gallo, Grigoiadis, and Tarjan [GGT89]

and for the pseudoflow algorithm by Hochbaum [Hoc97]. We compare the performance of

the parametric solvers for both push-relabel and pseudoflow.

Finally, in Chapter 5 we present a technique that is unique to the pseudoflow algo-

rithm, where we solve a series of network instances with the same nodes and arcs, but the

capacities change arbitrarily. We use a warm start technique where the solution of one

instance is used as a starting point for the next instance.



Chapter 2

Pseudoflow Algorithm

Hochbaum [Hoc97] presented a new algorithm for the maximum flow problem which was

motivated by an algorithm from the mining industry by Lerchs and Grossmann [LG65]

that solves the maximum closure problem. The maximum flow algorithm works with

pseudoflows in which nodes are allowed to have deficits as well as excesses—i.e., the ca-

pacity constraints on the arcs are maintained, but the excess of nodes may be negative,

zero, or positive.

In this chapter, we provide a description of the generic pseudoflow algorithm as well

as the lowest and highest label variants of the pseudoflow algorithm on which our imple-

mentations are based. We also describe the heuristics developed for the pseudoflow family

of algorithms.

2.1 Definitions

2.1.1 Trees

A tree is a connected, acyclic, undirected graph. A forest is an acyclic, undirected graph.

A rooted tree is a tree with a designated root node. The edges of a rooted tree define a

parent-child relationship. Each node, except the root, has a unique parent, which is the

next node along the unique path in the tree from that node to the root. If v is the parent

of u, we say u is a child of v. A node with no children is called a leaf.

We denote the parent of a node v as par(v). The parent of a root is denoted as nil.

A parent-child relationship on a collection of nodes V defines a unique forest of rooted

trees. The set of edges of the forest is {[u, v] : par(u) = v}. The set of root nodes is

14
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{v : par(v) = nil}.

For convenience in discussions, we adopt the convention that parents are “above”

children, the root is at the “top” of a tree, and leaves are at the “bottom.” Given a rooted

tree with a specified root node, for a node v in the tree, we denote the root of the tree

as rv. An arc along the path from a root to another node in the tree is said to point

downwards.

In a rooted tree, let the level of a node be one plus the number of edges along the path

from the node to the root. The level of a root is one, the levels of its children are two, etc.

2.1.2 Normalized Forests

Given a network G = (V,A) with source s and sink t, let VI = V \ {s, t}; |VI | = n− 2. We

call these the interior nodes of the graph. Let GI = (VI , EI) be the undirected version of

the subgraph induced by VI . Specifically, EI = {[u, v] ∈ VI × VI : (u, v) ∈ A}.

Given a parent-child relationship par(v) defined on the nodes of VI , let T = (VI , ET )

be a collection of rooted trees in GI induced by ET ⊆ EI , where ET are edges defining

the parent-child relationship: ET = {[u, v] : par(u) = v}. We call the rooted trees within

T branches. An edge [u, v] ∈ ET is an in-tree edge, and an edge [u, v] ∈ EI \ ET is called

an out-of-tree edge.

Given a pseudoflow f , we define the residual capacity (rf ) with respect to f in GI and

T just as we did for G in Section 1.1.2. The excess ef (v) of a node v with respect to f is

also defined as it was in G.

A forest T of rooted trees in GI is called a normalized forest with respect to a pseud-

oflow f if it has the following properties:

1. The flows on arcs out of the source and into the sink in G are at their upper capacity

bound: f(s, v) = c(s, v), ∀ v ∈ V such that (s, v) ∈ A, and f(v, t) = c(v, t), ∀ v ∈ V

such that (s, v) ∈ A.

2. The flows on all out-of-tree arcs in GI are at their upper bound or zero.

3. In every branch, all downwards residual capacities are strictly positive.
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4. The only nodes in T with nonzero excess are the roots of branches. All other nodes

satisfy their flow balance constraints and have zero excess.

Given a branch with a specified root node, we call the branch and all nodes in it strong

if the root node of the branch has positive excess; we call the branch and all nodes in it

weak if the root node has non-positive excess.

2.2 Generic Pseudoflow Algorithm

In this section we present the generic pseudoflow algorithm. The algorithm can be divided

into three stages: initialization, Phase I, and Phase II. A simple example of the execution

of the algorithm can be found in Appendix A.

In later sections, we will present additional pseudoflow algorithms. These algorithms

will be variations of Phase I—i.e., the initialization and Phase II stages will be the same

for all algorithms.

2.2.1 Initialization

The pseudoflow algorithm allows for many different initialization procedures, so long as

the normalized forest properties are satisfied. In this section, we discuss the simple ini-

tialization scheme. More involved initialization schemes are discussed in Section 2.6.1.

All initialization procedures take the graph (V and A) and the capacities (c) as inputs.

The procedures establish an initial pseudoflow (f) and a forest structure defined by a

parent-child relationship (par(v)) that conforms to the properties of the normalized forest

structure.1

The simple initialization procedure saturates the arcs out of the source and those into

the sink, as required by the normalized forest properties. All other arcs have zero flow.

With simple initialization, the nodes adjacent to the source have positive excess equal

to the capacity of the arcs from the source to the nodes. Similarly, nodes adjacent to the

sink have a deficit equal to the capacity of the arc from the nodes to the sink. For a node

adjacent to both the source and the sink (i.e., there is an arc from the source to the node

and another arc from the node to the sink), we saturate both arcs and sum the excess and

1These variable/parameter names are used for all procedures in this chapter.



17

deficit: ef (v) = c(s, v) − c(v, t). Such a node could either have net positive, negative, or

zero excess.

Below is the pseudocode for the simpleInit procedure. The simpleInit procedure calls

three common subroutines: one to initialize the parent-child relationship to make all nodes

root nodes, one to saturate the source and sink arcs—setting the flows on other arcs to

zero, and one to mark the branches as strong or weak. These are broken out as separate

procedures for use by other initialization routines later in the chapter.

procedure simpleInit(V,A, s, t, c):
call initializeRoots(V, par)
call saturateSourceSink(A, c, s, t)
call setBranchStatus(VI , f)

procedure initializeRoots(V, par):
foreach node v ∈ V :

par(v) ← nil

procedure saturateSourceSink(A, c, s, t):
foreach arc (u, v) ∈ A:
if u = s or v = t:
f(u, v) ← c(u, v)

else:
f(u, v) ← 0

procedure setBranchStatus(VI , f):
foreach root node v ∈ VI :

if ef (v) > 0:
mark v strong

else:
mark v weak

The simple initialization procedure creates initial positive excess at source-adjacent

nodes. All of this positive excess is the result of saturating the arcs out of the source.

No other positive excess will be created during the execution of the pseudoflow algorithm.

This initial excess will only be pushed through the graph during the rest of the pseudoflow

algorithm. Therefore, we can say that all of the positive excess originates at the source.

Similarly, negative excess is created adjacent to the sink, and this can be said to

originate from the sink. However, negative excess will not move during the execution of

the algorithm—i.e., the negative excess will remain at the sink-adjacent nodes.
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2.2.2 Phase I of the Generic Pseudoflow Algorithm

After an initialization procedure establishes an initial pseudoflow f and the initial parent-

child relationship, par(v), Phase I of the algorithm only operates on the nodes and edges

of GI—i.e., Phase I ignores the source and sink nodes, and the arcs to and from the source

and sink.

A merger arc (v, w) is an arc with positive residual capacity, rf (v, w) > 0, between a

strong node v and a weak node w.

Each iteration of the algorithm begins by identifying a merger arc. We denote the

strong node v and the weak node w. Let the root of the strong branch be rv, and let the

root of the weak branch be rw.

If v is not the root of the strong branch, we rehang2 the strong branch from v. This

involves reversing the parent-child relationships of all nodes on the path from v to rv.

That is, for a parent node u with child node v, v will become the parent of u. When

complete, v is the root of the branch, but we will continue to refer to the original root as

rv.

Note that this only affects the nodes along the path from v to rv—i.e., if u is on the

path to rv, and z is a child of u, but z is not on the path, then after rehanging the branch,

u is still the parent of z. See Figure 2.1.

The pseudocode to rehang a branch from a node v is shown below. When the procedure

returns, v is the root of the branch.

procedure rehang(v, par):
p ← par(v)
if p 6= nil:
call rehang(p, par)
par(p) ← v
par(v) ← nil

After rehanging the strong branch from the strong node v, we continue the merger by

attaching v under w, which merges the two branches to create a single branch in which v

is a child of w. This new single branch violates the fourth normalized forest property in

2In the literature, this operation is often referred to as inverting a branch or tree. Sleator and Tarjan
[ST83] refer to this operation as everting a tree.
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Figure 2.1: Example of a rehang operation. (a) The root of the strong branch is rv, and
the strong merger node is v. (b) After rehanging the strong branch from v, the parent-
child relationships between all nodes along the path from rv to v are reversed. Note the
children of u: after rehanging, z is still the left child, but now x is the right child, instead
of y.

that there is still positive excess at rv, which is no longer the root of a branch. Therefore

we need to push the excess from rv to rw. For each node along the path, this involves

sending the excess from the node to its parent. We call the portion of the push from rv

to v a strong push and the portion from w to rw a weak push.

If the amount of the excess at node i exceeds the residual capacity of the arc (i, j) to

its parent j, the branch is split creating a new strong branch with root i and initial excess

equal to ef (i)− rf (i, j). The amount of excess (rf (i, j)) that can be pushed across the arc

to j continues to be pushed along the path towards rw.

Because all downwards residual capacities are positive (by the third property of nor-

malized forest), and the merger arc has positive residual capacity, a positive amount of

excess reaches the weak branch. If the residual capacities of all arcs along the path from

w to rw are positive, then a positive amount of excess reaches rw. If the amount of excess

to reach rw exceeds the deficit at rw, the branch becomes strong; otherwise, the branch

remains weak. Otherwise, if an arc (i, j) along the path from w to rw has zero residual

capacity, no additional excess will reach rw; however, a new strong branch will be created

with root i.

The pseudocode for this entire process of pushing excess from a node u to the root of

its branch performing the splits is shown below.
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procedure renormalizePath(u, f, par):
δ ← ef (u)
while par(u) 6= nil:
v ← par(u)
δ ← min(rf (u, v), δ)
f(u, v) ← f(u, v)+δ
if ef (u) > 0:
〈〈excess exceeded residual capacity—split u from v〉〉
par(u) ← nil
mark u as strong

u ← v
end while

if ef (u) > 0:
mark u as strong

Note that the merger process removes one strong branch (the original branch involved

in the merger) and creates zero or more new strong branches. The number of weak

branches either remains unchanged or decreases by one if the weak branch becomes strong.

Let genericInit denote any initialization function that establishes an initial pseudoflow

and a normalized forest in accordance with the properties of normalized forest. The

complete pseudocode for Phase I and initialization is fairly simple:

procedure genericPseudoflow(V,A, s, t, c):
call genericInit(V,A, s, t, c)
while there is a merger arc (v, w):
call merge(v, w, f, par)

procedure merge(v, w, f, par):
call rehang(v, par)
par(v) ← w 〈〈attach v as child of w〉〉
call renormalizePath(rv, f, par)

Each iteration in Phase I consists of identifying a merger arc and performing a merger.

The merger process moves positive excess from the root of the strong branch to the weak

branch. This continues until no merger arc can be found, at which point, there are no

arcs in the residual graph from a strong node to a weak one.3 The pseudoflow may not

3Note that the status of a node can alternate between strong and weak many times during the execution
of the algorithm.
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be a feasible flow because the flow balance constraints for the branch roots may still be

violated.

Hochbaum [Hoc97] proved the following lemmas and theorems:

Lemma 2.2.1 Each iteration of Phase I of the generic pseudoflow algorithm either re-

duces the total excess of the strong nodes, or it makes at least one weak node strong.

Let M+ denote the capacity of the arcs out of the source—i.e., M+ =
∑

(s,v)∈A c(s, v).

Theorem 2.2.2 For integer capacities, Phase I of the generic pseudoflow algorithm re-

quires O(nM+) iterations.

Note that this complexity is pseudo-polynomial because it depends on M+. Later, we

present a strongly polynomial algorithm, so we are not very motivated to search for the

most efficient implementation of each iteration of this algorithm. Clearly, we can identify

a merger arc by scanning every arc in the graph in time O(m). The work of the merger

requires pushing the flow at most n steps along the merger path. Therefore the work per

merger is O(m+n), and hence, the total complexity for Phase I of the generic pseudoflow

algorithm is no worse than O(nmM+).

2.2.3 Phase II—Flow Recovery

Phase II converts the pseudoflow from Phase I into a feasible flow with maximum value—

i.e., a maximum flow. We call this process flow recovery. This flow recovery procedure

can be applied to the pseudoflow resulting from any Phase I algorithm—i.e., it is not

limited to the Phase I procedure for the generic pseudoflow algorithm shown above. Flow

recovery returns excess to the source and deficit to the sink. Thus, we will be considering

the entire graph including the source and sink.

Given a network G = (V,A) with source s and sink t and a pseudoflow f generated by

Phase I of a pseudoflow algorithm, let S be the set of strong nodes at the end of Phase

I plus the source s. Let S be the nodes in V \ S. (In other words, S is the set of weak

nodes and the sink t.) (S, S) is the set of arcs between S and S.

The original positive excess in the graph resulted from saturating the arcs out of the

source during initialization. Part of this original excess has been moved to the weak nodes
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through the arcs in (S, S) so that the remaining positive excess in S is less than the

capacities of the arcs out of the source. We can use flow decomposition on the pseudoflow

to determine a series of paths with positive flow from the source to each node with positive

excess4 and reduce the flow along the paths to return all of the excess to the source.

For every node v with positive excess with respect to f , we use a depth-first search

to find a path in G from the source to v such that each arc in the path has a positive

flow value, and we reduce the flow values along the path. Alternatively, we may identify

a cycle containing v, in which case the flow along the cycle is reduced. We then send as

much of the excess along this path/cycle as we can. The amount sent is the lesser of the

excess of the node and the bottleneck capacity of the path/cycle. This returns all of the

excess, or it saturates one or more arcs on the path/cycle. If the node still has excess, we

search for more paths until the excess of the node is zero.

procedure returnToSource(v, V,A, s, f):
while ef (v) > 0:
let P be a path from s to v or a cycle containing v, s.t. f(i, j) > 0 ∀ (i, j) ∈ P
δ ← min{ef (v),min{f(i, j) : (i, j) ∈ P}}
f(i, j) ← f(i, j)−δ, ∀ (i, j) ∈ P

The original negative excess in the graph resulted from saturating the arcs into the

sink during initialization. This original deficit has been partially reduced by the positive

excess of the strong nodes. The remaining negative excess is less that the capacities of

the arcs into the sink. We can also use flow decomposition to identify paths from deficit

nodes back to the sink. We use a function called returnToSink, which is nearly identical

to returnToSource, except that it searches for from the node to the sink.5

procedure returnToSink(v, V,A, t, f):
while ef (v) < 0:
let P be a path from v to t or a cycle containing v, s.t. f(i, j) > 0 ∀ (i, j) ∈ P
δ ← min{−ef (v),min{f(i, j) : (i, j) ∈ P}}
f(i, j) ← f(i, j)−δ, ∀ (i, j) ∈ P

4The nodes with positive excess during Phase II were strong root nodes at the end of Phase I. Similarly,
nodes with negative excess at the end of Phase I were weak roots. In Phase II, we are not concerned with
the branch structure, so we merely refer to nodes with non-zero excess.

5Since most initialization schemes (including simple initialization) only create deficit nodes adjacent
to the sink, we can alternatively reduce the flows on the arcs from the deficit nodes into the sink. The
amount of deficit at a node must be less than or equal to the capacity of the arc from the node to the sink.
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To recover the flow, we repeat these steps for each node in VI with nonzero excess.

At this point, the flow balance constraints are met for all nodes in the graph except the

source and sink, and the capacity constraints are met for all arcs in the graph—i.e., the

flow is feasible. The complete flow recovery procedure is shown below.

procedure flowRecovery(V,A, s, t, f):
foreach node v ∈ VI such that ef (v) 6= 0:
if ef (v) > 0:
call returnToSource(v, V,A, s, f)

else if ef (v) < 0:
call returnToSink(v, V,A, t, f)

Hochbaum [Hoc97] proved the following theorems related to flow recovery:

Theorem 2.2.3 Phase II constructs a feasible flow in time O(m logn).

Theorem 2.2.4 The flow generated by the complete pseudoflow algorithm is a maximum

flow.

With these and the results of Phase I, we can see that the complexity for the entire generic

pseudoflow algorithm is no worse than O(nmM+).

2.3 Lowest Label Algorithm

Phase I of the generic pseudoflow algorithm is pseudo-polynomial, which leaves room for

improvement. In this section, we develop a new Phase I algorithm called the lowest label

pseudoflow algorithm that is strongly polynomial. The generic pseudoflow algorithm does

not specify how merger arcs are selected. We introduce a scheme for labeling the nodes in

VI and present an algorithm that uses the labels to select merger arcs.6 This merger arc

selection policy results in a strongly polynomial Phase I algorithm.

The labeling scheme is somewhat similar to the labeling scheme used in the push-

relabel algorithm [GT88]. For each node v in VI , we associate a positive integer called the

label of the node. Let the label of a node v ∈ VI be denoted by l(v).

6Note that this presentation combines the concepts described in Hochbaum [Hoc97] as the “lowest
label” and “phase” variants of the pseudoflow algorithm.
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Given a graph G = (V,A), a pseudoflow f , and a normalized forest structure defined by

the parent-child relationship par, for all nodes v ∈ VI , the labels l(v) satisfy the following

properties throughout the execution of the lowest label Phase I algorithm [Hoc97]:

Property 1: For all arcs (u, v) in the residual graph Gf , ℓ(u) ≤ ℓ(v) + 1.

Property 2: [Monotonicity] Within a branch defined by par, along any path leading from

the root downwards, labels of the nodes are nondecreasing.

Property 3: The label of a node is a lower bound on its distance to the sink in the

residual graph Gf .

Property 4: Labels of nodes are nondecreasing over the execution of the algorithm.

Briefly, the lowest label algorithm assigns initial labels to the nodes, and it selects

merger arcs such that the labels of the strong and weak nodes are minimal. If it cannot

find a merger between a given strong node and its neighbors, the label of the strong node

is increased via a process called relabeling.

As is the case with constructing an initial normalized forest, there are numerous pos-

sible initial labeling schemes. The simplest scheme is to set the labels of all weak nodes

to one and all strong nodes to two. We call this constant labeling. Later, we will present a

more complex scheme based on distances to the nearest deficit node in the residual graph.

Each iteration of the lowest label algorithm begins by selecting the strong branch that

contains strong nodes with the lowest label. Suppose the lowest-labeled strong node in

the branch has label ℓ. We only visit the nodes within this branch that have label ℓ. Due

to the monotonicity property, we know that the lowest-labeled nodes are all in the “top”

portion of the branch.

For these strong nodes, we scan their neighbors in the residual network looking for

a neighbor with a label less than ℓ. If we find such a node, it must be weak because

the strong nodes we are visiting with label ℓ are, by definition, the lowest-labeled strong

nodes. In fact, property 1 says the minimum value that the label of a neighbor (in the

residual graph) can have is ℓ− 1. Therefore, we only need to look for neighbors with label

ℓ− 1.

If we find a merger arc (v, w), the merger proceeds as it does in the generic pseudoflow

algorithm: we rehang the strong branch from v, merge the branches by attaching v to w,
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and push the excess from rv to rw, splitting as many times as needed.

To visit the nodes labeled ℓ within a branch, we use a depth-first, post-order tree

traversal [CLR90]. This will visit the nodes in the branch labeled ℓ from the “bottom up.”

For a node v labeled ℓ, we visit all of its children labeled ℓ, searching for a merger. If we

find no merger among the children of v, we search for a merger with the neighbors of v in

the residual graph labeled ℓ−1. If we find no merger among the neighbors and children of

v, we increase the label of v to ℓ+ 1, which indicates that v and its descendants have no

neighbors in the residual graph labeled ℓ − 1 or less. Because this process is a recursive,

post-order traversal of the branch, we do not increase the label of a node to ℓ+1 until all

of the descendants are labeled ℓ+ 1 or higher, which maintains monotonicity.

Therefore, each iteration either performs a merger between a node labeled ℓ and one

labeled ℓ − 1, or it increases the labels of all nodes in the strong branch labeled ℓ—from

ℓ to ℓ+ 1.

The processSubTree function below recursively visits a subtree rooted at a strong node

v searching for mergers and relabeling nodes if no merger arc is found. Other inputs

to the function include the current pseudoflowf , the graph G = (V,A), the parent-child

relationship par, and the current node labels l. If the function performs a merger, it

returns true; otherwise it returns false.

function processSubTree(v, f, V,A, l, par):
ℓ ← l(v)
foreach child c of v:
if l(c) = ℓ:
merged ← processSubTree(c, f, V,A, l, par)
if merged:
return true

end foreach

foreach neighbor w of v in Gf :

if l(w) = ℓ− 1 and rf (v, w) > 0:
call merge(v, w, f, par)
return true

end foreach

l(v) ← l(v)+1
return false

Due to Lemma 2.3.3 below, we only need to scan the neighbors and children of a
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strong node once while it has a given label value ℓ. Therefore, for each node we maintain

a pointer into the lists of neighbors and children. These pointers are reset when the label

of the node is increased, which indicates that it has no neighbor with a label less than ℓ.

With this function in place, the main loop of the lowest label algorithm is straightfor-

ward. Let genericLabeling denote a function that assigns an initial labeling to the nodes

that satisfies properties one through three. The algorithm constructs an initial normalized

forest and assigns initial labels to the nodes. The main loop selects a strong branch with

the lowest-labeled root node and uses processSubTree to visit the nodes in the tree looking

for mergers. It follows from Property 3 that no node label can exceed n, so we can stop

the main loop if the root of the lowest-labeled strong branch has a label greater than or

equal to n.

procedure lowestLabel(V,A, s, t, c):
call genericInit(V,A, s, t, c)
call genericLabeling(V,A, s, t, f)
while not done:
select strong branch S with lowest-labeled root
r ← root of S
if l(r) > n:
done

call processSubTree(r, f, V,A, l, par)

Hochbaum [Hoc97] proved that the labels satisfy the properties throughout the exe-

cution of the lowest label algorithm. Hochbaum also stated that the algorithm is correct

because it only differs from the generic algorithm in the order of performing mergers.

Hochbaum also proved the following lemmas and corollaries related to the complexity

of the lowest label algorithm:

Lemma 2.3.1 Between two consecutive mergers using merger arc (v, w), the labels of v

and w must increase by one unit each.

Corollary 2.3.2 Phase I of the lowest label pseudoflow algorithm executes at most O(mn)

mergers.

Let us define phase number ℓ as the entire time we spend processing strong nodes with

label ℓ.
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Lemma 2.3.3 All arcs incident to strong nodes in phase ℓ are traversed O(1) times during

the phase.

Lemma 2.3.3 implies that the total work spent looking for mergers throughout the ex-

ecution of the algorithm is O(mn). In a straightforward implementation of the algorithm,

the complexity of a merger is O(n). However, this can be improved by using the dynamic

trees data structure of Sleator and Tarjan [ST83] to reduce the complexity of each merger

to O(logn).

Lemma 2.3.4 [Hoc97] The complexity of the lowest label Phase I pseudoflow algorithm

is O(mn logn).

Thus, the lowest label Phase I algorithm is strongly polynomial. The flow recovery

procedure (Phase II) is also strongly polynomial. Therefore, the complete maximum flow

algorithm using the lowest label procedure is strongly polynomial.

2.4 Highest Label Algorithm

Let a label-based algorithm be a Phase I pseudoflow algorithm that searches for a merger

from a node with label ℓ to one labeled ℓ − 1. Hochbaum [Hoc97] observed that for a

label-based algorithm to maintain the label properties above and to be of the complexity

stated, it is not necessary to choose the lowest-labeled strong node among all strong nodes.

It is sufficient that the node have the lowest label within any particular strong branch.

The highest label pseudoflow algorithm is a new label-based algorithm. It is motivated

by the highest label variant of the push-relabel algorithm which processes the active node

with the highest label [GT88]. Goldberg and Cherkassky [CG95b] indicated that the

highest label variant is superior for “long and narrow” graphs because it tends to create

many gaps that the gap relabeling heuristic of Derigs and Meier [DM89] can exploit.

The highest label pseudoflow algorithm is almost identical to the lowest label algorithm,

and it maintains the same properties. It differs in that it chooses the strong branch with

the highest root label rather than the lowest root label.7 Once a strong branch is chosen,

7As the explanation suggests, a more accurate name for this algorithm might be the “highest root label
algorithm.”
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it is processed in the same manner: we search down from the root visiting the nodes with

the same label as the root ℓ. We search for a merger arc to a node labeled ℓ− 1.

If we identify a merger between a strong node with label ℓ and another node labeled

ℓ− 1, we may merge with another strong branch because the label can no longer be used

to differentiate between weak and strong nodes.8 However, such a merger does not affect

the correctness of the algorithm.

If there is no merger, we relabel the nodes that we scanned and continue processing.

Note that this implies that we will select the same strong branch again because it was

the highest labeled root before, and we just increased the label of its root node. Once the

label of the root reaches n, we stop processing the branch.

The pseudocode for the highest label algorithm is shown below. It uses the same

processSubTree function that is used by the lowest label algorithm.

procedure highestLabel(V,A, s, t, c):
call genericInit(V,A, s, t, c)
call genericLabeling(V,A, s, t, f)
while there exists a strong branch with root label less than n:
select strong branch S with the highest labeled root
let r be the root of S
call processSubTree(r, f, V,A, l, par)

The label properties of the lowest label algorithm also apply to the highest label

algorithm and can be proved in much the same way. Hochbaum [Hoc97] showed that the

highest label algorithm has the same complexity as the lowest label algorithm. Although

the complexity of the lowest and highest label algorithms is the same, in Chapter 3, we

show that highest label algorithm performs significantly better in practice.

2.5 Simplex Merger

Another variant of the pseudoflow algorithm presented in Hochbaum [Hoc97] involves

modifying the merger procedure used in Phase I. The new merger procedure does not

alter the complexity of the pseudoflow algorithm, but it results in an algorithm that is

8With the lowest label algorithm, by definition if the lowest-labeled strong node has label ℓ, any node
with label ℓ− 1 must be weak.
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similar to the network simplex algorithm. This modified merger procedure can be applied

to any of the Phase I algorithms discussed above: generic, lowest label, or highest label.

Given a graph G = (V,A), an initialization procedure establishes an initial pseudoflow

f and normalized forest structure represented by par. A Phase I iteration begins, as

usual, by identifying a merger arc (v, w) between a strong branch and a weak branch. We

identify the arc with minimum residual capacity on the path [rv, . . . , v, w, . . . , rw]. This is

the bottleneck arc, and its capacity is called the bottleneck capacity. If there is more than

one arc with the same minimum capacity, we select the first one—i.e., the one closest to

rv along the path [rv, . . . , v, w, . . . , rw].

The simplex merger procedure differs from the previous (typical) merger procedure in

two ways: first, it will perform at most one split along the path from rv to rw; second,

only a subset (or none) of the strong branch will be rehung from the strong node v and

attached under the weak node w, as opposed to attaching the entire strong branch under

w.

There are a number of cases to consider. First, if the excess of rv is less than or equal

to the bottleneck capacity, the merger is the same as the previous merger procedure, but

note that there is no split along the path [rv, . . . , rw], and the strong branch becomes a

subtree of the weak branch.

Otherwise, if the strong excess is greater than the bottleneck capacity, then we can

only push the amount of excess equal to the bottleneck capacity. This implies that a

positive amount of excess remains at rv. In fact, rv continues to be a strong root with

positive excess, and we do not rehang the entire strong branch.

Let us assume that the bottleneck arc is (i, j), where i is closer to rv, and j is closer

to rw. We only push δ = rf (i, j) units of excess along the path [rv . . . rw]. There are three

possibilities to consider with regard to the location of the bottleneck arc along the path

from rv to rw.

1. The bottleneck arc lies in the strong branch: (i, j) is somewhere along the path from

rv to v. The portion of the strong branch from rv down to i will continue to be

strong. We pull δ units of excess down from the root, rv. The arc (i, j) is saturated

by increasing the flow by δ units, and j is split from i—i.e., i is no longer the parent
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Figure 2.2: Simplex merger when the bottleneck arc (i, j) is within the strong branch.
After the merger (b), the portion of the strong branch above i remains strong, and the
rest becomes weak and is attached under w.

of j. The portion of the branch from j down to v becomes weak. This portion of the

strong branch is rehung from v and attached to w as a child. The excess δ is pushed

from j to rw, without generating any further splits. This is shown in Figure 2.2.

2. The bottleneck arc is the merger arc—i.e., (i, j) is the same as (v, w) in our typical

notation for mergers. In this case, no rehanging is necessary. We pull δ units of excess

down from rv to i, and we increase the flow on (i, j) by δ units, thus saturating (i, j).

Finally, we push the excess from j up to rw without any additional splits.

3. The bottleneck arc lies in the weak branch: (i, j) is somewhere along the path from

w to rw. In this case, the portion of the weak branch from w to i becomes part of

the strong branch. To do this, we split i from j (j is no longer the parent of i) and

rehang the portion of the weak branch below i from w and attach w as a child under

v. Now, we pull δ units of excess from rv down to i and increase the flow on (i, j)

by δ units, saturating it. Finally, we push the excess from j up to rw without any

additional splits. This is shown in Figure 2.3 below.

Notice that this is very different from the typical pseudoflow algorithm merger pro-

cess. Normally, the strong branch is attached to the weak branch. However, in this

case a portion of the weak branch is attached under the strong branch, and that

portion of the weak branch is rehung instead of the strong branch being rehung.

To summarize the procedure: if the excess of the strong root ef (rv) is less than or

equal to bottleneck capacity δ = rf (i, j), the merger is performed using the standard

procedure presented earlier. Otherwise (ef (rv) > δ), δ units of excess are pushed along
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Figure 2.3: Simplex merger when the bottleneck arc (i, j) is in the weak branch. (b) The
portion of the weak branch below j is rehung from w and attached under v.

the path [rv, . . . , v, w, . . . , rw]. The nodes along the path from rv to i will be strong after

the merger, the nodes along the path from j to rw will be weak, and the bottleneck arc

(i, j) will be saturated and removed from the normalized forest.

The pseudocode for the simplex merger procedure is shown below:

procedure simplexMerge(v, w, f, par):
let (i, j) be the bottleneck arc along the path [rv, . . . , v, w, . . . rw]
δ ← rf (i, j)
if ef (rv) ≤ δ:
call merge(v, w, f par)

else:
foreach arc (i, j) on the path [rv, . . . , v, w, . . . , rw]:
f(i, j) ← f(i, j)+δ

end foreach

if (i, j) ∈ [rv . . . v]:
par(j) ← nil 〈〈remove j as child of i〉〉
call rehang(v, par)
par(v) ← w 〈〈attach v as child of w〉〉

else if (i, j) ∈ [rw . . . w]:
par(i) ← nil 〈〈remove i as child of j〉〉
call rehang(w, par)
par(w) ← v 〈〈attach w as child of v〉〉

else:
〈〈(i, j) is the merger arc—no need to modify branch structure〉〉

This simplex merger can be applied to the generic, lowest label, or highest label pseudoflow

algorithms. When it is applied to the lowest or highest label algorithms, there is a minor

problem. In the third case above, we attach a portion of the weak branch under the strong

branch. However, with lowest and highest label algorithms, the label of the weak node,

w, is less than that of the strong node, v. Furthermore, the labels along the path from w
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to rw are nonincreasing.

This means that when the merger is complete, rv is still the root of the branch; however,

rv is not the lowest-labeled node in the branch. The subtree below v contains nodes with

labels less than the label of rv—i.e., the branch no longer has the monotonicity property.

We call such a branch degenerate. This conflicts with our implementation that assumes

monotonicity of the labels within strong branches.

The solution is to maintain our basic technique for processing branches—visiting the

lowest-labeled nodes first—even though the lowest-labeled node is no longer the root of

the branch. This is a significant, but not insurmountable, complication for the implemen-

tation.

As we visit the lowest-labeled portions of the degenerate branch, if we do not find a

merger, these nodes are relabeled, and eventually monotonicity is restored to the branch.

If there is a merger, we again have to consider the above three cases. If a portion of this

branch is rehung and attached to the weak node in case 1, then monotonicity is restored

for that rehung portion of the branch. Any portion that was degenerate before the merger

and that was not rehung, will continue to be degenerate and will continue to need this

special handling until monotonicity is restored.

During a merger that initially creates a degenerate branch, we flag the nodes that are

in the portion of the branch that is degenerate. Subsequently, when we process the branch

with processSubTree, we start the processing from the lowest portion of the branch that

is still degenerate. By noting the degeneracy during the merger when we know exactly

which portions are degenerate (those nodes under v) rather than waiting until we process

the strong branch again, we avoid the need to search the entire branch looking for the

lowest labeled nodes.

Therefore, these degenerate branches do not affect the complexity of the simplex al-

gorithm. The search for a merger arc (performed by processSubTree) is unchanged except

that it may initially start from a node that is not the root of a branch. Mergers still occur

between nodes labeled ℓ and those labeled ℓ − 1. Before a merger arc (v, w) can be used

again as a merger arc, the labels of v and w must both increase by at least one. Therefore,

the number of mergers for a label-based algorithm is still O(mn).
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Regardless of which variant of Phase I the simple merger procedure is applied to, the

complexity of the Phase I algorithm is unchanged. As Hochbaum[Hoc97] observed, this

merger procedure (when viewed in a transformed version of the graph) is very similar to

the network simplex algorithm. Network simplex maintains a spanning tree where the

flow on every arc not in the current spanning tree is either at its upper or lower capacity

bound. Each iteration of the network simplex algorithm moves from one spanning tree

solution to another by adding an out-of-tree arc, adjusting the flows, and removing an

in-tree arc whose flow is at the upper or lower capacity bound [Dan63].

Given a graph G = (V,A), a pseudoflow f , and a normalized forest structure defined

by par resulting from the ongoing execution of a Phase I pseudoflow algorithm, we can

construct an extended network [Hoc97] as follows. The source s and sink t are shrunk into

a single “root” node r, and the network is augmented with a set of additional arcs to and

from r. For each branch in the normalized forest, let v denote the root of the branch. For

strong branches, we add an excess arc (r, v) from r to v with residual capacity equal to

the excess of the strong branch. For weak branches, we add a deficit arc (v, r) from v to r

with residual capacity equal to the deficit of the branch. We refer to the set of arcs in the

extended network as Ax, where Ax = {(r, v) : v is root strong root} ∪ {(v, r) : v is root

weak root} ∪ {(i, j) : (i, j) ∈ A, i ∈ VI , and j ∈ VI}. The extended network is the graph

Gx = (VI ∪ {r}, Ax).

In this extended network, the normalized forest plus the root r form a single rooted

spanning tree called a normalized tree. All arcs from the original graph which are not part

of the normalized tree have zero flow or are saturated.

With the simplex merger procedure, the addition of the merger arc (v, w) to the

normalized tree creates a cycle in the extended network [r, rv, . . . , v, w, . . . , rw, r], just

as the entering arc creates a cycle in network simplex. Flow is pushed along this cycle

to saturate the bottleneck arc. When the bottleneck arc is removed, a new spanning tree

is formed, just as removing the leaving arc does in network simplex. If the excess at the

strong root ef (rv) is less than the capacities of arcs long the path [rv, . . . , rw], then the

excess arc (r, rv) is removed—i.e., the excess arc is the leaving arc. Similarly, if the strong

excess ef (rv) and the capacities along the path [rv, . . . , rw] exceed the deficit at the weak
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root rw, then the deficit arc (rw, r) is the leaving arc, and it is removed.

Thus, the algorithm begins each iteration with a spanning tree. The meger/entering

arc forms a cycle along which flow is pushed to saturate the bottleneck arc, which becomes

the leaving arc. Once the leaving arc is removed, a new spanning tree is formed.

2.6 Heuristics and Variants

One interesting feature of the pseudoflow algorithm is that there are many opportunities

for heuristics and variations. In this section we present some of the heuristics that we

investigated.

2.6.1 Initialization

The simple initialization scheme presented in Section 2.2.1 simply saturates the arcs out

of the source and those into the sink. However, there are many more possibilities. All of

the initialization schemes include saturating the source and sink arcs, as required by the

properties of the normalized forest.

As noted before, the simple initialization scheme produces a normalized forest with

single node (singleton) branches. Other initializations (described below) lead to larger

branches. For all of the initialization schemes, the in-tree edges of the branches are defined

by ET = {[u, v] : par(u) = v}. The roots of the branches are noted for each initialization

scheme.

2.6.1.1 Blocking Path

In the blocking path initialization method, after saturating the source and sink arcs, we

push the excess at each source-adjacent node along a path as far into the graph as possible.

For each node v with positive excess, we scan its outgoing arcs in the original graph

to find an arc (v, u) with sufficient capacity to handle the entire excess. If we find an arc

with sufficient capacity, we make v a child of u and push the excess to u by setting the

flow equal to the excess, f(v, u) = ef (v).

The process continues until the excess reaches a node that lacks an arc with sufficient

capacity to accommodate the excess, or we reach a sink-adjacent node. If we cannot push

the excess from the node, we stop and move onto the next node with positive excess. If we
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push the excess to a sink-adjacent node, we sum the excess and deficit of the sink-adjacent

node, thereby reducing the deficit or creating positive excess at the sink-adjacent node.

In the case where there are multiple arcs with sufficient capacity, we can choose any

arc. In such a case, we will choose the first such arc in the node’s list of out-arcs.

Finally, we set the status of the resulting branches as either strong or weak using

setBranchStatus shown in Section 2.2.1.

procedure blockingPushInit(V,A, s, t, c):
call initializeRoots(V, par)
call saturateSourceSink(A, c, s, t)
mark all nodes unvisited
foreach source-adjacent node u such that ef (u) > 0:
call blockingPush(u, f, c, par)

call setBranchStatus(VI , f)

procedure blockingPush(u, f, c, par):
mark u visited
find the first arc (u, v) such that c(u, v) > ef (u) and v not visited
if such an arc exists:
par(u) ← v
f(u, v) ← ef (u)
blockingPush(v, f, c, par)

end

This process creates branches that are paths. The number of branches/paths equals

the original number of strong nodes. The roots of the strong branches are the nodes at

which no arc of sufficient capacity could be found. The leaf nodes are the source-adjacent

nodes that contained the original excess. The weak branches are singletons. To insure that

we do not create any cycles, we mark each node as visited when we push excess through

the node. The complexity for the entire initialization process is O(m).

2.6.1.2 Greedy Initialization

When the blocking path initialization method encounters a node with positive excess

that has no single arc with sufficient capacity, the process stops at that node. A simple,

obvious extension is to allow flow out on multiple arcs. If no arc out of node u has sufficient

capacity for the excess ef (u), we saturate the arc (u, v) with maximum capacity, but we

do not add u as a child v. Now we have two nodes, u and v, with positive excess. Each
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of these is the root of a separate branch with excess at the root (v is a singleton branch).

Each branch can be processed independently, searching to push flow far away from the

source.

procedure greedyInit(V,A, s, t, c):
call initializeRoots(V, par)
call saturateSourceSink(A, c, s, t)
mark all nodes unvisited
foreach source-adjacent node u such that ef (u) > 0:
call greedyPush(u, f, c)

call setBranchStatus(VI , f)

procedure greedyPush(u, f, c, par):
mark u visited
find arc (u, v) with maximum capacity such that v not visited
if c(u, v) > ef (u):
par(u) ← v
f(u, v) ← ef (u)
call greedyPush(v, f, c, par)

else:
f(u, v) ← c(u, v)
call greedyPush(v, f, c)
call greedyPush(u, f, c)

As was the case with blocking path initialization, we avoid cycles by marking nodes as

we visit them. This prevents pushing excess through the same node twice. The result is

also a series of branches that are paths, but not all leaf nodes in the branches are adjacent

to the source, as was the case with blocking path initialization. The weak branches are

singletons. The complexity is O(m).

Obviously, this may generate more branches than the original number of strong nodes.

This method can also push the flow further into the graph than the blocking path method

since it can push excess out of a node through multiple arcs. For example, many synthetic

problem classes have arcs out of the source with capacity far greater than the outgoing

capacity of the source-adjacent node—i.e., c(s, u) >
∑

(u,v)∈A c(u, v). With the blocking

path initialization, the excess cannot leave the source-adjacent node, but with greedy

initialization the excess can be pushed further into the graph.
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2.6.1.3 Shortest Path Initialization from Sink

The previous two initialization schemes grow strong branches (paths) out from the source-

adjacent nodes while pushing excess into the graph. In this section, we build weak branches

from the sink-adjacent nodes. One way to do this is to build branches such that for every

node in the branch, the parent of the node is one arc closer to the sink (in the residual

graph) than the node. This creates a structure that is inherently acyclic.

We begin by saturating the arcs out of the source and those into the sink. To establish

the distances to the sink in the residual graph, we perform a breadth-first search backward

from the sink-adjacent nodes in the residual graph. Initially, we set the distances of all

nodes to infinity. Then we set the distances of the sink-adjacent nodes to one and insert

them into a FIFO queue. The breadth-first search proceeds by removing a node u from

the queue and scanning its zero-deficit neighbors. If the residual capacity from another

node v into u is positive (rf (v, u) > 0), and we have not already visited v (i.e., its distance

is still infinity), we set the distance of v to be d(u) + 1, make v a child of u, and add v to

the queue. This continues until we have visited all the zero-deficit nodes in the graph and

the queue becomes empty.
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procedure shortestPathInit(V,A, s, t, c):
call initializeRoots(V, par)
call saturateSourceSink(A, c, s, t)
∀v ∈ VI , d(v) ← ∞
initialize empty queue
foreach sink-adjacent node v such that ef (v) < 0:
d(v) ← 1
add v to queue

while queue not empty:
u ← first node in queue
d ← d(u) +1
foreach node v adjacent to u:
if rf (v, u) > 0 and ef (v) = 0 and d(v) =∞:

d(v) ← d
par(v) ← u
put v in queue

end foreach

end while

call setBranchStatus(VI , f)

This procedure creates strong nodes that are singleton branches adjacent to the source.

The roots of the weak branches are the sink-adjacent nodes. All nodes with zero deficit

belong to one of these weak branches. The flows on the edges in the trees are all zero.

The complexity of the procedure is O(m). The resulting branches are not simple

paths: each node may have multiple children. Note that this technique of growing a

branch structure with zero flows on the arcs from the sink could be adapted to grow

strong branches out from the source. However, we did not implement this.

2.6.1.4 Saturate-All Initialization

In this initialization, we saturate all arcs in the graph. For each node, the net excess is

the sum of the inflows and outflows.

procedure saturateAllInit(V,A, s, t, c):
call initializeRoots(V, par)
foreach arc (u, v) ∈ A:
f(u, v) ← c(u, v)

call setBranchStatus(VI , f)
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This procedure produces singleton branches. Nodes with positive excess are strong, and

nodes with non-positive excess are weak. In contrast to the other initialization methods

we have presented, the saturate-all initialization may create deficit nodes that are not

adjacent to the sink.

2.6.2 Label Gaps

Once initialization is complete, the label-based pseudoflow algorithms proceed by visiting

the nodes in strong branches. While visiting strong nodes labeled ℓ with either the lowest

label or highest label algorithm, if there are no nodes labeled ℓ− 1 we say that there is a

gap in the labels. In this section we present heuristics to reduce the running time of an

implementation of the pseudoflow algorithm when a gap is detected.

2.6.2.1 Lowest Label Algorithm

Recall that because the label of a node cannot exceed n, we terminate Phase I of the lowest

label algorithm when the lowest-labeled strong node reaches n. However, very early during

the implementation presented in the next chapter, we noticed that the end of Phase I was

marked by many relabel operations without any mergers. The labels of the strong nodes

were simply rising to n.

A heuristic for the push-relabel algorithm that was discovered early in the development

of the push-relabel algorithm is the gap relabeling heuristic of Derigs and Meier [DM89].

This inspired the following observation for the lowest label pseudoflow algorithm.

Lemma 2.6.1 If the lowest-labeled strong branch has root label ℓ, and there are no nodes

in the graph with label ℓ−1, then there is no path in the residual graph from a strong node

to a weak node or to the sink, and Phase I of the lowest label algorithm can terminate.

This follows immediately from Property 1. Any path in the residual graph from a

node labeled ℓ to a node with label less than ℓ (e.g., a weak node or the sink) must pass

through a node labeled ℓ− 1.

In the push-relabel algorithm, the gap allows the algorithm to stop processing the

subset of nodes that have labels greater than ℓ because they are in the source set of
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the minimum cut. In the lowest label pseudoflow algorithm the gap allows us to stop

processing all strong nodes and finish Phase I.

This simple heuristic is the most powerful one we have developed. In fact, it is a

standard part of the implementation because there is no case where it performs poorly.

To implement this rule, we simply keep n counters, one for each possible node label

value. The initialization procedures set the counters based on the initial number of nodes

with each label value. When a strong node is relabeled from ℓ to ℓ+1, the counter for ℓ is

decreased by one, and the counter for ℓ+1 is increased by one. When we begin processing

a branch with root label ℓ, we simply consult the counter for ℓ− 1 to see if there are any

nodes with label ℓ− 1. All operations of updating and checking the counter are executed

in constant time.

2.6.2.2 Highest Label Algorithm

In the highest label algorithm, if a strong branch has root label ℓ, and there exist no nodes

with label ℓ−1, then the branch will not merge with any other branches in processSubTree,

and the nodes in the branch labeled ℓ will be relabeled to ℓ+ 1. At this point, there will

be no nodes labeled ℓ− 1 or ℓ, and the procedure will continue until the strong branch is

labeled n.

Therefore, we recognize that when there are no nodes labeled ℓ − 1, there will be no

more mergers from this branch to any others. So, we can stop processing the branch. To

do this we relabel the nodes in the branch to n and move on to the next highest labeled

branch. We call this operation pruning the branch.

To implement the check for nodes labeled ℓ − 1, we use the same counters described

above for the lowest label algorithm.

2.6.3 Distance-Based Labels

The label of a node can be viewed as a lower bound on the distance to a deficit node (weak

root) in the residual network.

Let dw(v) denote one plus the distance (number of arcs) from a node v to nearest

deficit node in the residual network. For a weak root r, dw(r) = 1.



41

Lemma 2.6.2 The label of a node v is a lower bound on its distance to the root of a weak

branch in the residual network plus one—i.e., l(v) ≤ dw(v).

Proof: For a weak node, this is simply a restatement of Property 3. For other nodes in

VI , this follows from Property 1.

In the more general case where roots of weak branches may have labels greater than

one, then l(v) − l(rw) is a lower bound on the distance between v and a weak root rw in

the residual graph. In our current implementation, weak roots always have labels equal

to one. Hence, we use the form in Lemma 2.6.2.

To establish the distances to deficit nodes, we perform a breadth-first search in the

reverse residual graph from the deficit nodes. We call this procedure distance to deficit

labeling.

For most initialization schemes, the weak roots are adjacent to the sink.9 In this case,

we can modify the initialization step that loads the breadth-first search queue to only

consider the sink-adjacent nodes, which may be faster in practice than scanning all the

nodes in VI to identify deficit nodes. These nodes all have a label of one, and they are

one arc away from the sink. Therefore, the distance dw(v) represents the distance from v

to t in the residual network. We call this special-case procedure distance to sink labeling.

In order to maintain the labeling properties, we cannot simply set the node labels to

match the distance labels. In particular, we need to maintain the monotonicity property.

If a node v is the closest node in a branch to a deficit node, and it is not the root of

the branch, then its parent and other ancestors may have distance labels greater than

the distance label of v. If the node labels were updated to match the distance labels, the

labels of some parent nodes would exceed the labels of their children, which violates the

monotonicity property.

Therefore, we regard the distance dw(v) as an upper bound on how high we can set the

label of the node, l(v). We process the nodes in a branch from the leaves up using a post-

order traversal. If a node has no children, the label can be set to match the distance label.

Otherwise, we update the labels of the children of v recursively, compute the minimum of

9The notable exception is the saturate-all initialization which may create deficit nodes that are not
adjacent to the sink.
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the new labels of the children, and set the label of v no higher than that minimum.

The pseudocode to update the labels of the nodes in a branch while respecting mono-

tonicity is shown below:
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procedure relabelBranch(v, l, par):
if v has no children:
l(v) ← dw(v)

else:
foreach child u of v:
call relabelBranch(u, l,par)

ℓ ← min{l(u) : u is a child of v}
l(v) ← min(ℓ, dw(v))

We developed a pair of heuristics that aim to set or raise the label of a node using

the distance to deficit information. The intent of these heuristics is to send excess toward

deficit nodes via shortest paths in the residual graph.

2.6.3.1 Initial Labels

One way to use distance labeling is during initialization. After an initialization scheme has

built branches and (optionally) pushed excess into the branches, we compute the distance

to deficit labels and call relabelBranch on each branch to set the labels of the nodes. This

can be used with any initialization scheme.

2.6.3.2 Global Relabeling

At any time during Phase I, it is possible to compute the distance to deficit labels with

respect to the existing residual graph and raise the node labels to the match distance

labels, subject to the monotonicity constraints within branches. We call this operation

global relabeling, and it uses the distance to deficit and relabelBranch procedures.

Because it is a rather expensive operation, O(m), global relabeling should not be

performed too frequently. In the current implementation, the frequency of updates is

controlled by the number of node relabel operations, although other schemes are possible.

The algorithm takes a parameter g (g ≥ 0) and performs a global relabeling operation after

every gn node relabels (if g = 0, we do not perform relabeling). We focus on the number

of relabels rather than mergers because Nguyen and Venkateswaran [NV93] indicated that

it is a superior strategy for the push-relabel algorithm.
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2.6.4 Branch Management

The roots of strong branches are stored in buckets based on the label of the root node;

all strong branches with the same root label are stored in the same bucket. To identify a

branch with the lowest-labeled strong nodes, we simply select a branch from the lowest-

labeled bucket. Similarly, for the highest label algorithm, we select from the highest-

labeled bucket. There are numerous ways to implement the buckets. Because the buckets

can hold from zero to n branch roots, we chose to implement them as simple, singly-linked

lists. We always remove branch roots from the head of the list, but we support three

different schemes for inserting into the list:

LIFO: We add new branch roots to the head of the list. This makes the bucket a stack.

Intuitively, LIFO should behave like a depth-first search. We start processing one strong

node, and we continue pushing its excess as deeply into the graph as we can before the

excess is absorbed by weak nodes.

FIFO: We add new branch roots to the tail of the list. This makes the bucket a queue.

Intuitively, FIFO should behave like a breadth-first search while pushing excess out from

the source. First, we process all the branches adjacent to the source. Then we process

their neighbors one unit further from the source, and so on.

Wave: This is a combination of LIFO and FIFO. We usually put the branch root at the

end of the list (FIFO) unless the root of the branch is the same root we last removed from

a bucket; in this case, it is inserted at the head of the list (LIFO).

There are many other ways to manage the strong branches. One alternative would be

to consider the excess of the root; for example, we could choose the strong branch with

the most excess.

2.6.5 Search Order

When we process a strong node with label ℓ looking for a merger, we need both to scan

the neighbors of the node and process each child labeled ℓ. However, we can apply these

operations in either order—either scan the neighbors first and children second or vice

versa.

Pre-order: We scan the node’s neighbors before visiting the children.
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Post-order: We visit the children first, and if there were are no mergers, we scan the

neighbors.

Because the post-order procedure searches for merger arcs deeper in the strong branch

(i.e., in child a subtree) rather than shallower (i.e., among the neighbors), we expect it

would result in longer paths from a strong merger node to its root. This would result in

more work for rehang operations and a longer path for the strong push. Therefore, we

would expect post-order searches to run slower than pre-order searches.

2.6.6 Delayed Normalization

Usually after each merger between the strong node v and the weak node w, we renormalize

the tree by pushing excess from the strong root rv to v (strong push), across (v, w), and

from w to the weak root rw (weak push). We split edges that have insufficient residual

capacity, thus creating new strong branches. This process restores the property that

excess/deficit only exists at the root nodes of branches. However, we can temporarily

suspend the property in the following manner: during a merger, we push the excess from

the strong root as far as the weak node w, but we do not push it to the weak root rw.

As we are processing strong branches with label ℓ, we leave the excess at the weak

node. When we are done with strong branches labeled ℓ and are about to begin processing

branches with a root label other than ℓ, we renormalize the tree by pushing the excess

from weak nodes to their roots. That is, we complete the weak pushes that we deferred

at the time of the merger.

Performing the strong push (rather than leaving the excess at the strong root, rv) may

create more strong branches with label ℓ, which we could continue to process. On the

other hand, weak pushes create new strong branches with labels less than ℓ. By deferring

the weak pushes, we delay changing to a lower phase in the lowest label algorithm.

Note that this is not the only way to delay normalization. One alternative would be

to perform weak pushes every k mergers.

We only implemented delayed normalization for the lowest label pseudoflow solver, but

it can also be used with the highest label algorithm.
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2.6.7 Summary

In Table 2.1 we summarize the various options for the pseudoflow solver that are imple-

mented and evaluated in this work.

Initialization simple saturate source and sink arcs
path blocking path from source
greedy greedy paths with splits
shortest shortest path weak branches
saturate saturate all arcs

Initial Label const strong nodes = 2, weak = 1
sink distance to sink
deficit distance to deficit node

Root Label & lowest lowest label, immediate normalization
Normalization delayed lowest label, delayed normalization

highest highest label, immediate normalization

Strong Branch lifo LIFO—stack
Management fifo FIFO—queue

wave FIFO—except for original strong branch

Search Order pre pre-order tree traversal
post post-order tree traversal

Global Relabel 0, 0.5, 1, relabel period as a factor of n
Period 2, 4 (zero means no relabeling)

Merger pseudo standard, pseudoflow merger
simplex simplex merger

Table 2.1: Summary of heuristics and options for the pseudoflow solver.

We refer to a specific combination of heuristics by listing the name of each heuristic

in the order that they appear in Table 2.1. For example, “simple-const-highest-lifo-pre-

0” refers to simple initialization, constant initial labeling, highest-label algorithm, LIFO

branch management, pre-order tree traversal, with no global relabeling. Note that unless

stated otherwise, the merger type is pseudoflow.
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Experimental Results

As we saw in the previous chapter, the worst-case complexity of the pseudoflow algorithm

is close to that of the push-relabel algorithm, although it is slightly worse. It is well

known that the theoretical complexity of an algorithm and the actual performance of an

implementation of the algorithm can be quite different.

In this chapter we investigate the performance of our first implementation of the pseud-

oflow algorithm compared to the best known implementation of the push-relabel algorithm

as well as an implementation of Dinic’s algorithm. We test the algorithms on a fairly large

set of problem instances, including common synthetic problem instances and some in-

stances from real world applications.

We also investigate the effects of the large number of heuristics for the pseudoflow

algorithm. We select a pair of standard heuristic combinations to provide acceptable

performance in most circumstances. We also identify the best heuristic combination for

each problem family.

Our experiments show that the pseudoflow algorithm is quite competitive; in many

cases the pseudoflow implementation is better than push-relabel, and even when it does

not perform as well as push-relabel, its performance is typically close to that of push-

relabel. This is a considerable accomplishment for the first implementation of a new

algorithm compared to an algorithm that that has been implemented and studied exten-

sively. The pseudoflow algorithm shows considerable promise. With additional effort,

future implementations of the pseudoflow algorithm could even prove to be consistently

superior.

47
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3.1 Previous Maximum Flow Implementation Studies

In this section, we survey some previous implementations of maximum flow algorithms.

In particular, recent studies have focused on the push-relabel algorithm and established

it as the best algorithm in practice, which is why we primarily focus on comparing the

pseudoflow algorithm to push-relabel later in the chapter.

3.1.1 Derigs and Meier—1989

The paper of Derigs and Meier [DM89] was one of the earliest to compare the performance

of the push-relabel algorithm to Dinic’s algorithm, which had previously been regarded as

the best in practice. One of the most significant contributions of Derigs and Meier is the

gap relabeling heuristic.1 Given a maximum flow problem being solved by push-relabel

and node labels d(v), Derigs and Meier proved that if there exists a value 0 < ℓ < n such

that no node has label ℓ, then all nodes v such that ℓ < d(v) < n are disconnected from

the sink in the residual graph and thus known to be in the source set of the minimum cut.

Such nodes can be relabeled to d(v) = n.

The implementation of Derigs and Meier computes the exact distances from nodes to

the sink in the residual graph to use as initial labels for the nodes. However, the imple-

mentation does not recompute the distances periodically during the execution. Therefore,

it is not the same as the global relabeling heuristic2 described by Goldberg and Tarjan

[GT88], where the node labels are periodically updated throughout the execution of the

algorithm to match their exact distance to the sink in the residual graph. In addition

to the FIFO and LIFO variants of push-relabel, Derigs and Meier also implemented the

highest label variant. All implementations were written in Fortran.3

The set of problem instances used for testing was fairly limited: they only used two

classes of networks, NETGEN and RMFGEN. Derigs and Meier [DM89] concluded that

push-relabel is superior to Dinic’s algorithm. The highest label variant was generally the

best, and “for the special structured RFMGEN-examples, the exact labeling seems to be

1Cherkassky [Che79] and Ahuja and Orlin [AO91] also discovered this heuristic independently.
2Derigs and Meier refer to the “gap relabeling” technique as “relabel-global,” which is not the same

thing as Goldberg and Tarjan mean when they say “global relabeling.” In keeping with the terminology
of most papers, we refer to the technique of Derigs and Meier as “gap relabeling.”

3Unless noted otherwise, all other implementations described in this section were written in C.
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essential” [DM89].

3.1.2 DIMACS Challenge—1991

Between November 1990 and August 1991, the First DIMACS Implementation Challenge

was held to evaluate efficient implementations of minimum-cost flows, maximum flows,

assignment, and non-bipartite matching problems. The challenge gathered a set of random

graph generators and specified a methodology for testing implementations. This was used

as the basis of performance comparisons during the challenge and subsequent papers,

including ours. The proceedings were published in 1993 [JM93].

3.1.3 Anderson and Setubal—1993

Anderson and Setubal [AS93] compared the push-relabel algorithm to Dinic’s algorithm

and implemented older algorithms including Ford-Fulkerson, Karp and Edmonds, and

Karzanov. They tested the implementations with a wide variety of input graphs.

The authors implemented four variants of the push-relabel algorithm: FIFO, LIFO,

highest label, and largest excess. They also implemented both the gap relabeling and

global relabeling heuristics individually, but they did not use both heuristics in the same

program.

After initial testing on small instances, the authors identified push-relabel as superior to

all other programs, except on acyclic dense graphs, where Dinic’s algorithm was superior.

They tested the four variants of push-relabel with larger graphs and found that the highest-

label algorithm was generally superior to the other variants. The FIFO variant seemed

to be “more robust, since it was never outperformed by large margins” [AS93]. They also

found global relabeling to be typically better than gap relabeling, but did not test both

heuristics in the same program. In fact, they found global relabeling can improve the

performance by an order of magnitude in some graphs.

3.1.4 Nguyen and Venkateswaran—1993

Nguyen and Venkateswaran [NV93] implemented three variants of push-relabel: FIFO,

LIFO, and highest label. They investigated the effects of global relabeling, and they also

implemented the gap relabeling heuristic. However, like Anderson and Setubal [AS93],
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they did not try the two heuristics together. The frequency used for global relabeling

was based on the number of node relabel operations rather than the number of discharge

operations used by Anderson and Setubal.

Nguyen and Venkateswaran confirmed that the highest label variant was superior for

most instances, but that highest label is not the best for acyclic dense graphs. They

stated, rather emphatically, that “global updates are crucial” [NV93], and that their

strategy of performing global relabeling every n node relabels is superior to relabeling

every m/2 discharge operations, which was used by Anderson and Setubal. However,

this observation seems to be based on two separate implementations by the two sets of

authors, rather than a single implementation with two separate policies. Therefore, some

of the observed differences (especially in running times) may have been the result of coding

differences in the two implementations.

3.1.5 Badics and Boros—1993

Badics and Boros [BB93] made aggressive use of theoretical techniques and data structures

and compared the results to simpler implementations. They implemented two versions

using dynamic trees [ST83]. The first implementation was based on the PLED (Pru-

dent Linking and Excess Diminishing) variant of the push-relabel algorithm described by

Cheriyan and Hagerup [CH89]. In addition to dynamic trees, this implementation used

randomization of the edge lists and scaling of the amounts of flow pushed. The second ver-

sion used dynamic trees in a straightforward implementation of the FIFO push-relabel al-

gorithm. The authors also created versions of these algorithms using non-dynamic trees—

i.e., they implemented the same tree operations using an explicit representation, and the

operations were implemented with obvious linear-time code.4 Finally, as a baseline, they

also implemented a simple version of the FIFO algorithm. The authors implemented global

relabeling based on the number of node selections (iterations) and the number of cuts in

the tree structure. The code checks for gaps like the gap relabeling heuristic, but it uses

the presence of a gap to initiate a global relabeling operation, rather than only relabeling

the nodes with labels greater than the gap value.

4This is in contrast to dynamic trees that use an implicit representation of a forest. This results in
O(log n) time for most operations.
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In all cases, the simple FIFO implementation outperformed the more sophisticated

implementations. For some problem instances where the flow could be pushed through

long paths, the authors did find that the dynamic tree versions outperformed the versions

that were implemented using non-dynamic trees. The latter showed exponential growth

as a function of the number of nodes, while the dynamic trees maintained linear growth.

The authors speculated that dynamic trees might be useful in graphs with a very long

distance between the source and sink.

3.1.6 Goldberg and Cherkassky—1995

Goldberg and Cherkassky [CG95b] implemented Dinic’s algorithm and several variants of

push-relabel, but they only report on the highest-label and FIFO variants. The authors

implemented both relabeling strategies because, as they point out, the two heuristics are

not mutually exclusive.

They confirmed the results of previous authors that “the highest label variant of the

push-relabel method with global and gap relabel heuristics is the best currently-available

method for solving maximum flow problems” [CG95b]. Goldberg and Cherkassky had

access to the implementations of Anderson and Setubal [AS93] and compared the perfor-

mance of the implementations. The performance of the Goldberg and Cherkassky imple-

mentations were superior to those of Anderson and Setubal, so we used the Goldberg and

Cherkassky implementations as the baseline for our experiments in in this Chapter.

3.1.7 Ahuja, Kodialam, Mishra, and Orlin—1997

Ahuja, Kodialam, Mishra, and Orlin [AKMO97] studied various algorithms with a slightly

different emphasis. Rather than focusing exclusively on CPU time, they provide some in-

depth analysis of the operation counts. They also chose to implement algorithms not

studied by other authors, in particular variants of their own excess-scaling [AO89], stack-

scaling [AOT89], and wave-scaling [AOT89] algorithms.

They chose to re-implement the highest label algorithm, rather than use an existing

implementation. This may be related to their choice of Fortran as an implementation

language, whereas nearly all recent implementations have been done in C. Also, they

specifically chose not to implement global relabeling, despite the findings of almost all
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previous authors that global relabeling is crucial. Furthermore, although they did some

minimal testing with the DIMACS problem generators, they conducted the bulk of their

work with other instances. Despite these issues, they found that the highest label push-

relabel algorithm was superior to the other algorithms.

3.2 Software Implementations

In this section we discuss the software implementations we tested. This includes the

pseudoflow, push-relabel, and Dinic’s algorithms.

3.2.1 Pseudoflow Implementation

Our initial implementation of the pseudoflow algorithm is designed to be as flexible as

possible to facilitate investigating different heuristics and variants. Later implementations

can be tuned for speed based on these results.

We implemented the algorithm in C++ [ES90], and we followed an object-oriented

design [Boo91] to maximize the flexibility and simplicity of the implementation.

The data structures we used are simple. Each node is represented by a C++ object

that has a pointer to its parent (if any) and two lists of edges, one each for the neighbors

and children. The list of neighbors contains edges for both arcs into and out of the node,

and its size is fixed when the problem instance is initialized. The list of children is used

as we build up trees, and its size is dynamic. It begins with zero entries when the node

has no children and can grow up to the number of neighbors. These lists are implemented

as simple arrays rather than linked lists or more sophisticated data structures. Pointers

into the list are represented as simple integer indices.

Each edge in the original graph is represented as a single object containing the capacity

and flow of the edge, as well as pointers to the head and tail nodes.

Due to the simple nature of our requirements, we did not use any libraries such as

the C++ Standard Template Library (STL) [PSLM00] or the Library of Efficient Data

types and Algorithms (LEDA) [MN00] to implement the structures. Even though LEDA

includes types and algorithms for network applications, we nonetheless chose to avoid it

due in part to a perception that more general libraries might result in a performance
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penalty. A newer library that shows promise is the Generic Graph Component Library

(GGCL) of Lee, Siek, and Lumsdaine [LSL99], which was developed after our work began.

The authors of GGCL said that it is five to seven times faster than LEDA, validating our

concerns about the performance of LEDA.

One pleasant side effect of our decision to avoid third-party libraries is that the code is

comparatively portable because it does not depend on such libraries or “newer” features

in C++, like multiple inheritance and templates.

The pseudoflow solver is also represented as a class. This allows us to create a subclass

to override the behavior of the base solver. This is how the simplex solver is implemented

with minimal disruption to the highest and lowest label solvers. The entire implementation

of the pseudoflow algorithm is a single program. The various combinations of heuristics

are selected via command line options.

The implementation makes extensive use of small, inline functions. Through the use

of conditional compilation in the C preprocessor, these can be compiled inline for perfor-

mance or out-of-line for debugging and profiling. This allows the use of a profiler such

as gprof [GKM82] to collect very detailed information about the inner workings of the

implementation without sacrificing performance during normal operations.

The initial development was conducted on a Pentium-based system running FreeBSD

[Leh96]. Subsequent development was done on a laptop computer running Windows 98

using the Cygwin tools [Noe98]. Performance testing was done on Sun Microsystems com-

puters running Solaris. On all systems, we used the GNU compiler tools, including versions

2.7.2.1, 2.8.1, 2.91.57, and 2.95.2. The code was compiled using the “-O2” optimization

flag.5 In addition, the source code was written using the noweb [Ram94] literate program-

ming [Knu92] tool. The resulting documented code is over 230 pages after formatting with

LATEX. There are about 5,500 lines of embedded C++ code.

3.2.2 Push-relabel and Dinic’s Implementations

The implementations of push-relabel and Dinic’s algorithm we tested were written by

Goldberg and Cherkassky [GC97]. Collectively these are known as PRF. These include the

5We experimented briefly with the -O4 flag and found that it did not improve the performance. We
opted for -O2 to reduce the possibility of optimizer-induced errors in the executable programs.
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highest-label and FIFO variants of the push-relabel algorithm. The push-relabel variants

use both gap and global relabeling. These were selected as the baselines both because they

were readily available, and because Goldberg and Cherkassky indicate that they are faster

than other recent implementations such as Anderson and Setubal [AS93]. We considered

the push-relabel implementation of Badics [BB93], but found memory management bugs

[And97], and so eliminated it from further consideration.

Each variant of push-relabel is implemented as a stand-alone program rather than

selecting the behavior from the command line. The programs are written in C and use

no external libraries. They were compiled with the GNU tools under FreeBSD, Solaris

and Cygwin. The “-O4” optimization flag was used to compile the PRF implementations

since that was the optimization flag used by Goldberg and Cherkassky [GC97].

The PRF implementation of Dinic’s algorithm was also used, again because it was

easily available and Goldberg and Cherkassky [GC97] indicate that it is significantly faster

than other available implementations.

The PRF code puts a premium on performance and has no additional documentation.

In contrast to our fine-grained implementation of the pseudoflow algorithm, the PRF

implementations feature large, monolithic functions that maximize performance, but make

it difficult to profile the code with much precision.

3.2.3 Test Harness

Testing was conducted using an improved version of our workbench software [And97]

written in Python [Lut96]. The workbench provides an object-oriented framework for ma-

nipulating the solvers, problem instances, and solutions. This provides a simple, intuitive

interface that masks the differences between various solver and problem generators. This

is achieved via a uniform facade pattern [GHJV94].

The result is much clearer and more intuitive than using the underlying programs

directly. Consider using the washington generator (described later) to create an instance

of the rlg-long graph6 with 214 nodes with a random number generator seed of 5. This

uses function code 6, dim1 = 64, and dim2 = 256. The command would be:

washington -seed 5 6 64 256 rlg-long.max

6This type of graph and the parameters that define it are described in Section 3.4.2.
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Note that it is difficult to recognize which number on the command line controls which

parameter of the program.7 These conventions vary from program to program, which

further complicates the problem.

In our framework, this would be done as follows:

gen = RLGLong()

gen.seed = 5

gen.xParam = 14

gen.createFile(’rlg-long.max’)

To be sure, this is more verbose, but it is also fairly obvious what the various param-

eters do.

Each solver and generator has its own conventions for being invoked. For example,

the PRF solvers read problem input on standard input and write solutions to standard

output, whereas the pseudoflow solvers read and write files. The workbench provides a

uniform interface regardless of the underlying programs.

To invoke a PRF solver (e.g., h prf) and the pseudoflow solver (pfs) from the com-

mand line, one would use:

h_prf < test.max > test.flow

pfs test.max test.flow

Note that the PRF solver uses the shell I/O redirection operators, “<” and “>”,

whereas the pseudoflow solver does not. In the workbench, we use the solve function

on a solver to invoke the underlying program, thus concealing the differences in how the

programs handle input and output:

inst = ProbInstance.getInstance(’test.max’)

hprf = HighestLabel()

soln1 = hprf.solve(inst)

pfs = LowestLabel()

soln2 = pfs.solve(inst)

The workbench also provides facilities to validate the solutions from solvers. At the

very least, we check the value of the maximum flow against the value returned by the

highest-label version of push-relabel. If we have reason to doubt a solution, especially

7The random number seed, 5, is comparatively intuitive, but we added that parameter with the “-seed”
flag to call it out. It was not part of the original code.
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the “benchmark,” push-relabel highest-label solution, we can also perform more thorough

checking by verifying the flow balance and capacity constraints and by identifying the

source and sink sets of the minimum cut and comparing the flow value to the capacity out

of the source set or into the sink set.

The CATS [GM99] maximum flow distribution provides a series of shell scripts to exe-

cute the solvers and generators. Our framework is much more sophisticated and portable

than the shell scripts. The CATS scripts force all programs to conform to a single calling

convention; all programs must read from standard input and write to standard output.

This has led to minor modifications of the DIMACS instance generators to fit within this

framework. The CATS scripts provide no error checking. Even the exit values of the

programs are not checked.

On the other hand, the reusable solver framework of Ruark [Rua98] is much more

sophisticated than our software. It relies heavily on the Microsoft COM [Rog97] system

to integrate various tools. This allows solvers to be used from programs such as Excel.

However, this essentially requires that the tools be used under Microsoft Windows be-

cause COM is not widely used or available on other operating systems. In contrast, our

tools are written portably in Python, and they run on many platforms including Win-

dows, FreeBSD, and Solaris. However, because Python on Windows includes extensions

to interface with COM, we could make our framework available via COM as an option on

Windows without requiring that the software run exclusively on Windows.

3.3 Hardware

As mentioned above, development and preliminary performance testing was conducted

on a variety of systems. The results of the final performance tests presented here were

conducted on a Sun Microsystems E420R system. The system had four SPARC V9 CPUs

running at 450 MHz and a total of 2 GB of RAM. Although this was a multi-CPU system,

we only ran one test at a time to avoid performance anomalies such as bus contention and

cache conflicts.

We performed the machine calibration experiment, as suggested by the DIMACS Chal-

lenge Core Experiments [Dim90]. Table 3.1 shows the running times (in seconds) for the
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two tests with and without compiler optimizations.

Optimization Test 1 Test 2
Level real user system real user system

no optimization 0.2 0.2 0.0 1.7 1.7 0.0
-O flag 0.1 0.1 0.0 0.8 0.8 0.0

Table 3.1: Average running times for DIMACS machine calibration tests on Sun E450
system.

The original intent of this test during the DIMACS Challenge was to prepare a “com-

parative study of the diverse programming environments used by Challenge participants

and of sources of variation in runtime experiments” [Dim90]. Currently, it is a simple

measure of hardware performance that can be used to help put absolute running times

reported by various authors into some kind of relative perspective.

3.4 Methodology

3.4.1 Testing Procedures

Our testing methodology is based on the suggestions from DIMACS Core Experiments

document [Dim90]. For each random problem type and particular size, we generated

five specific instances, each with a different random seed. For each specific instance, we

averaged the times over five runs. For nonrandom generators and data files, we averaged

the times of five runs on a single instance. These 5 or 25 runs are considered one test

point.

Although the testing was performed on a system that was basically idle, we chose to

run the solvers on each specific instance five times to eliminate any variation due to other

processes (e.g., system processes) running on the computer or due to other system-level

issues that we did not have control over. The choice of five different random seeds is based

on the methodology of Goldberg and Cherkassky [GC97].

We performed initial testing for all problem classes with modest-sized instances. Dur-

ing this phase we tried all possible combinations of heuristics for the pseudoflow algorithm.

Based on these results, we identified a set of heuristics that was the best for each problem

class for this particular instance size. Note that this combination of heuristics need not
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be the best for all instance sizes within the problem class, and each problem class has its

own set of such heuristics.

Since it would be unrealistic to expect most users to permute all of the possible com-

binations of pseudoflow heuristics to find the best combination for their particular prob-

lem(s), we chose two standard sets of heuristics. We used these three sets of heuristics

(two standard and one specific to the instance) to perform a more thorough analysis.

After the initial testing, we examined the performance of the solvers on each problem

class more closely. We generated a series of instances, each with roughly twice as many

nodes as the previous instance. For each instance size within a class, we generated five

instances of the random graphs. We ran the PRF solvers and the three heuristics for the

pseudoflow solver against the various problem instances. This demonstrates how well the

performance of the solvers scales with instance size.

All timings were done with the POSIX times system call [Pos88], and we only report

the user CPU time. Execution times exclude the time taken to read the problem instance.

In the case of the pseudoflow implementations, however, we do include the time to establish

the initial normalized forest and the initial node labels.

3.4.2 Problem Instances

Most of our problem instances are created by the well-known generators used in the

DIMACS Challenge. Many of these are also part of the CATS [GM99] maximum flow

problems. In addition, we use some synthetic data from the open-pit mining problem as

well as an actual data instance from a real mine. Finally, we have some minimum cut

instances from scheduling problems. All of these are described below.

Except where otherwise noted, the generating programs are available from DIMACS

and CATS, and the graphs are randomly generated based on a seed value.

3.4.2.1 Genrmf

The genrmf generator is from Goldfarb and Grigoriadis [GG88] and is also known as

RMFGEN, especially in older literature. The dimensions of the graph are controlled by

two parameters, a and b. The generated graph contains b frames, each composed of a2

nodes. The frames are arranged in a square grid, a nodes on a side. Each node in a frame
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has forward arcs to up to four immediate neighbors within the frame. Neighboring frames

are connected with a2 arcs that form a randomly-generated perfect matching between the

nodes in two adjacent frames. The capacities of the arcs are controlled by two parameters:

c1 and c2. Arcs within a frame have a fixed capacity of c2a
2. The capacities of arcs between

frames are chosen uniformly from [c1, c2]. The values specified by DIMACS are c1 = 1

and c2 = 104.

Within this class, there are two subclasses, genrmf-wide and genrmf-long, that are

controlled by a single parameter x. The number of nodes in the graph is 2x. For genrmf-

long graphs, a = 2x/4 and b = 2x/2. For genrmf-wide, a = 22x/5 and b = 2x/5.

3.4.2.2 Washington

The washington generator was developed by Anderson and several seminar students at

the University of Washington [GC97]. It can generate many different types of graphs.

These types are sometimes referred to in the literature by a function code number, which

is a parameter on the command line that determines the type of generated graph. The

program takes five parameters: the function code, two dimensions (dim1 and dim2), a

range (range), and the random seed.

Random Level The first graph type is the random level graph (rlg), which is generated

via function code 2. The graph is a rectangular grid of dim1 rows and dim2 columns.

Each node is connected to three nodes chosen at random in the next column. This

is an acyclic graph. The capacities of the arcs between columns are uniform random

numbers between zero and range, which is 104 as per the DIMACS suggestions.

Like genrmf, there are two subtypes, rlg-long and rlg-wide, that are controlled by

a single parameter x, which again specifies the total number of nodes in the graph,

n = 2x. For rlg-long, dim1 = 64 and dim2 = 2x−6. For rlg-wide, dim1 = 2x−6 and

dim2 = 64. In other words, long graphs are 64 nodes wide and the depth varies,

whereas wide graphs are 64 nodes deep and the width varies.

Line Moderate The second graph type is the line-moderate graph, which corresponds

to function code 6. To generate a graph with 2x nodes, we set dim1 = 2x−2 and

dim2 = 4. This will create a graph with four (dim2) nodes adjacent to the source
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and four others adjacent to the sink. The range parameter specifies the out-degree

of each node, and it is set to 2(x/2)−2 =
√
n/4. Each vertex i (other than the source

and sink) has up to
√
n/4 arcs to vertices chosen randomly from [i + 1, i +

√
n].8

The capacities of these arcs are selected uniformly from [1, 106]. This graph is also

acyclic.

Cheriyan The final graph type used from the washington generator was “designed by

Cheriyan, and considered as a hard case for Goldberg’s algorithm” [BB93]. It cor-

responds to function code 11. It is a deterministic graph that is not part of the

recommended set of generators from CATS. We chose the parameters based on the

values used by Badic and Boros [BB93]. To generate a graph with 2x nodes, we set

dim1 = 1000, dim2 = (2x − 2007)/40, and range = 10.

We modified the washington program to accept a seed value for the random number

generator on the command line. This allows us to consistently regenerate graphs based

on the seed and the rest of the parameters.

3.4.2.3 Acyclic Dense

The acyclic-dense generator, AC, was originally developed by Waissi in Pascal and trans-

lated to C by Setubal [GC97]. For each node numbered k, there are arcs to every other

node with a higher number—i.e. k+1, k+2, . . . , n. In particular, the source has a link to

every node in the graph, including the sink, and every node has an arc to the sink. The

capacities of these arcs are selected randomly from U [1, 106].

3.4.2.4 AK

The AK generator was developed by Goldberg and Cherkassky [GC97]. It creates in-

stances which are hard for push-relabel. It is not available from the DIMACS site, but is

distributed with the PRF solver implementations. It is also part of the CATS maximum

flow package. This class of graphs is not random. For a specified size parameter, k, it

generates a deterministic graph of approximately 4k nodes.

8A random number r is chosen from U [i+ 1, i+
√
n]. If r > n, then no arc is generated.
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The graph contains two subgraphs, one which is designed to be hard for the highest-

label and FIFO variants, and the other is designed to be hard for the wave variant. The

graph is described in detail in the appendix of Goldberg and Cherkassky [GC97].

3.4.2.5 Synthetic Mining Data

We use synthetic data from Hochbaum and Chen [HC00] that simulates data for the open-

pit mining problem (e.g., see [Joh68]). The generator produces files of various sizes up to

54,000 blocks/nodes. The successor blocks above each block follow specific patterns used

in the mining industry and are described by Hochbaum and Chen. With 54,000 blocks,

this results in 410,330 arcs. These instances are quickly solved by the implementations we

are testing, so we concatenated the instances together to make larger instances, four times

the original size—i.e., 216,000 blocks and 1,657,580 arcs. We tested with three separate

instances of these files, which are called mine1, mine2, and mine3.

3.4.2.6 Real Mining Data

We obtained a data file from a nickel laterite mine in Australia from a company that

wishes to remain anonymous. The data file consists of 162,302 blocks/nodes and 942,144

arcs (the successors of each block are the closest five blocks in the layer above it). We

only have a single instance of such data, which is called Pit2.

3.4.2.7 Scheduling Data

Möhring et al. [MSSU03] model project scheduling problems with start-time dependent

costs as minimum cut problems. The authors also describe an algorithm for solving

resource-constrained project scheduling problems using Lagrangian relaxation to handle

the resource constraints. Each relaxation results in a minimum cut problem on a graph.

The scheduling problems consist of J jobs, which are scheduled non-preemptively over

a time period T . Let Sj be the start time for each job. Every job j incurs a cost of wjt

if j begins at time t (i.e., if Sj = t). Let dij be the integral length of time between two

jobs i and j. For any feasible schedule, Sj ≥ Si + dij , indicating that j must start at least

dij time units after i. The objective is to minimize the sum of the costs wjt for all jobs

subject to the temporal constraints and the constraint that each job is run exactly once.
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One of the main results of Möhring et al. [MSSU03] is that this scheduling problem

can be modeled as a minimum cut problem. There is a vertex vjt for each job and time

period combination, and there is a source and a sink node. There are two main types of

arcs in the graph: assignment arcs (vjt, vjt+1) and temporal arcs (vit, vjt+dij ). There are

also arcs from the source to all nodes vj0 and from nodes vjT to the sink. The capacities

of the assignment arcs are c(vjt, vjt+1) = wjt, and the temporal arcs have infinite capacity.

Möhring et al. proved that the value of an optimal solution equals the capacity of any

minimum cut in the graph.

Möhring et al. [MSSU03] also consider resource-constrained scheduling problems. They

use Lagrangian relaxation to vary the costs wjt and solve for a minimum cut in the graph

with updated capacities. The authors currently solve these minimum cut problems with

the push-relabel algorithm.

The authors provided us with a number of scheduling instances. We selected three

instances that were considered to be the most difficult to solve. Most of the individual

minimum cut instances are quickly solved in less than a second. Therefore, we report the

time to solve an entire sequence of 51 minimum cut problems. The names and sizes of the

instances are shown below in Table 3.2.

Name Nodes Arcs

j6 11,617 27,487

j16 18,393 44,416

j56 20,565 60,567

Table 3.2: Sizes of three most difficult scheduling problem instances.

3.5 Overall, Best-Case Performance

3.5.1 Initial Summary

Table 3.3 below is a summary of the performance of the pseudoflow solver versus the PRF

implementations for the modest-sized instances. For these instances, we permuted all

possible heuristic combinations for the pseudoflow algorithm, as described in Section 3.4.1.

Each row in Table 3.3 shows the execution times of the various solvers for a given prob-

lem class. Each cell contains the execution time in seconds and the relative performance
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of each solver as a percentage of the execution time of the best solver for that problem

class. So, the best solver has a relative time of 100, and all others are 100 or more. The

best execution time for a given instance for all solvers is highlighted in bold font.

The solvers used throughout this chapter are:

Dinic: the PRF implementation of Dinic’s algorithm.

FIFO: the FIFO push-relabel algorithm.

HL: the highest-label push-relabel algorithm.

pfs-C: the first standard pseudoflow solver using the highest-label algorithm with simple
initialization, constant initial distance labels, wave branch management, pre-order
branch searching, and global relabeling with a frequency of 4n, that is simple-const-
highest-wave-pre-4.

pfs-D: the second standard pseudoflow solver, which also uses the highest label algorithm
and simple initialization, but with distance-to-deficit initial node labels, lifo branch
management, pre-order branch searches, and no global relabeling—i.e., simple-deficit-
highest-lifo-pre-0.

pfs-EB: the combination of pseudoflow heuristics that we found ran best for the modest-
sized instance of this class. This combination is unique for each problem class.

In Table 3.3, we can see that pfs-EB has the best performance in 7 out of 11 cases.

Furthermore, pfs-EB is within 50% of the best push-relabel for all cases except rlg-long.

We can also see that one or the other of our standard heuristic combinations is within

45% of the best push-relabel in 7 out of 11 cases. Also, all three of the pseudoflow heuristic

combinations beat the Dinic solver in all cases except cheriyan.

From these modest-sized instances, it is clear that the performance of the new pseud-

oflow solver is certainly competitive with the mature push-relablel solvers, and the pseud-

oflow solver is generally superior to the Dinic solver.

3.5.2 Variations within Initial Summary Data

For the randomly generated problem classes, we generated five specific instances for each

problem problem size. The data in Table 3.3 represent the average times for each solver

over all five specifc instances. In Table 3.4 we look at the variations in the run times for

specific instances within the same random problem class for each solver.
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PRF Solvers Pseudoflow Solvers

Problem Class Dinic FIFO HL pfs-C pfs-D pfs-EB

ac.2048 12.343 6.200 3.888 2.054 3.011 1.752

n =2,048 m =2,096,128 705 354 222 117 172 100

ak.8000 120.730 17.332 10.414 5.276 83.152 0.036

n =32,006 m =48,007 335,361 48,144 28,928 14,656 230,978 100

cher-wide.16 4.682 16.409 53.196 95.986 320.072 2.554

n =65,527 m =72,875 183 642 2,083 3,758 12,532 100

genrmf-long.16 64.995 2.403 0.692 1.527 0.859 0.788
n =15,488 m =71,682 9,392 347 100 227 124 114

genrmf-wide.16 60.09 10.881 6.831 14.844 26.854 3.688

n =16,807 m =80,262 1,629 295 185 402 728 100

line-mod.16 16.831 2.503 2.158 9.694 2.860 2.829
n =16,386 m =522,249 780 116 100 449 133 131

rlg-long.16 37.474 1.284 0.436 1.454 1.804 1.363
n =65,538 m =196,544 8,595 294 100 333 414 313

rlg-wide.16 11.344 2.245 1.375 1.995 3.086 1.921
n =65,538 m =195,584 825 163 100 145 224 140

sched 6, 16, 56 164.102 33.976 66.434 64.53 132.024 27.288

(total time, all instances) 601 125 243 256 484 100

mine1-3 158.23 35.43 37.65 20.79 21.87 17.56

n =216,000 m =1,657,580 901 202 214 118 125 100

Pit2 11.53 8.45 8.47 8.88 5.13 2.03

n =162,302 m =942,144 568 416 417 438 253 100

Table 3.3: Overall summary for modest-sized instances. In each cell, the average solving
time in seconds is on top. The best solver time across all solvers is in bold font. The
solving time relative to the best is on the bottom, where the best solver for the problem
class has a relative time of 100.
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Each cell in Table 3.4 describes the variation in running time for a specific solver/problem

class pair. The minimum and maximum running times are expressed as a percentage de-

viation from the average reported in Table 3.3 (the minimum is represented as a negative

number and located above the maximum in the cell). For each minimum and maximum,

we also note which instance (0 through 4) in the set of specific instances produced that

time. For each solver, the smallest minimum and largest maximum are set in bold font.

PRF Solvers Pseudoflow Solvers

Problem Class Dinic FIFO HL pfs-C pfs-D pfs-EB

genrmf-long.16 -13.56% (1) -5.38% (4) -10.06% (1) -5.47% (3) -14.81% (4) -13.96% (4)
7.31% (0) 11.10% (2) 30.13% (2) 8.65% (2) 24.51% (2) 21.07% (2)

genrmf-wide.16 -20.56% (1) -14.37% (0) -14.63% (0) -7.79% (2) -3.11% (2) -11.40% (0)
23.73% (3) 9.69% (1) 14.39% (3) 8.46% (1) 5.27% (1) 7.31% (3)

line-mod.16 -5.40% (0) -27.20% (1) -27.43% (1) -18.38% (4) -12.30% (1) -12.83% (1)
5.57% (3) 7.24% (0) 7.23% (4) 28.70% (1) 19.25% (4) 19.06% (4)

rlg-long.16 -23.41% (2) -23.08% (2) -31.19% (0) -34.65% (1) -51.66% (0) -36.91% (0)
22.18% (3) 39.05% (3) 28.44% (4) 111.47% (0) 63.97% (3) 82.07% (2)

rlg-wide.16 -12.94% (2) -10.21% (1) -30.03% (1) -31.82% (4) -57.17% (1) -20.66% (1)
10.75% (0) 12.06% (4) 22.78% (4) 44.48% (1) 99.97% (4) 31.92% (4)

Table 3.4: Performance variations within instances of random classes. Each cell shows
the minimum (top) and maximum (bottom) run times relative to the average for the five
instances tested. The bold entries in each column indicate the most extreme minimum
and maximum for the solver across all of the instance classes.

Within a problem class, there is a considerable of variation in the running times for

the various solvers. Sometimes the variation for a solver within a given problem class

is comparatively small—e.g., Dinic on the line-moderate and pfs-D on genrmf-wide are

approximately ±5%. However, there are also fairly large variations too—e.g., pfs-D on

rlg-wide varies by approximately a factor of four (the minimum is 50% below the average,

and the maximum is 100% above the average.)

Within any given problem class, the variation does not seem attributable to any one

instance. The instance that was the fastest or slowest for one solver is not necessarily

the same instance that was fastest or slowest for another solver. In fact, when looking at

the line-moderate and rlg-wide classes and the pfs-C and pfs-D solvers, the fastest for one

solver is the slowest for the other solver and vice versa. For example, the fastest instance

for pfs-C on the line-moderate data was number 4, but that instance was the slowest for

pfs-D.

With regard to the solvers, the pseudoflow solvers seem to be less stable than either the
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Dinic or push-relabel solvers. The pseudoflow solvers created the most extreme minima

and maxima. In some cases (e.g., pfs-C on rlg-long, pfs-D on rlg-wide, and pfs-EB on rlg-

long), the smallest minimum and the largest maximum for the solver both occur within

the same problem class. This suggests one or more outliers in that problem class that are

distorting the average, which would affect both the maximum and minimum since they

are expressed relative to the average.

Regardless of the details of the causes for the extremes, the performance of the pseud-

oflow solvers appears to be more sensitive to the input data than either the push-relabel

or Dinic solvers.

3.5.3 AC

Performance for the AC family of graphs is shown in Figure 3.1. The pfs-EB heuristic

combination is simple-const-lowest-wave-pre-0. Note that data is missing for HL and FIFO

for the case where n = 4096. This is due to a bug in these solvers that causes them to

return an incorrect result.9

All of the pseudoflow solvers beat the FIFO and Dinic solvers. The pfs-EB solver beats

the highest-label push-relabel solver for all cases. All of the pseudoflow solvers beat the

highest label solver for n = 2048.

3.5.4 AK

Performance for the AK family of graphs is shown in Figure 3.2. The pfs-EB combination

of heuristics is saturate-const-highest-lifo-pre-0, although all of the heuristic combinations

that use the saturate-all initialization method solve the ak.8000 instance in 0.1 seconds or

less.

The pfs-EB heuristic (with saturate-all) is two to three orders of magnitude faster than

the highest-label push-relabel. The pfs-C solver is typically faster than push-relabel, but

it runs slightly slower than the highest-label algorithm for n = 64, 006 nodes. The pfs-D

solver is consistently poor, although it beats the Dinic solver.

9Because we performed our testing on a larger and faster system, we were able to test larger instances
than Goldberg and Cherkassky did. For example, they do not report results for the AC graph with 4,096
nodes.
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Nodes Arcs Dinic HL FIFO pfs-C pfs-D pfs-EB

512 130,816 0.186 0.122 0.193 0.131 0.146 0.104

1024 523,776 2.425 1.209 1.645 0.616 1.503 0.793

2048 2,096,128 12.343 3.888 6.200 1.786 2.054 1.752

4096 8,386,560 73.672 error error 22.925 16.202 11.125

Figure 3.1: Performance for AC family graphs. pfs-EB is simple-const-lowest-wave-pre-0.

The saturate-all initialization method excels for the AK family because of the struc-

ture of the graph. For a size parameter k, the graph contains four paths of length k with

deterministic capacities based on k. By construction, along two of these paths the capaci-

ties of each node are balanced—the in-capacity matches the out-capacity, and the optimal

solution involves having all arcs saturated. The in- and out-capacities of the nodes along

the second pair of paths are balanced, except that there is an arc of unit capacity between

a node in the first path and a node in the second path.

After saturating the arcs in the graph, all of the nodes in the first two paths have zero

deficit. In the other two paths, there are k nodes with one unit of excess and k nodes with

one unit of deficit. The pseudoflow solver performs k mergers to return the single unit of
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excess from each of the k excess nodes to the k deficit nodes, at which point the solution

is optimal.
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16,006 24,007 30.776 2.796 4.458 1.342 16.802 0.012

32,006 48,007 120.730 10.414 17.414 5.276 83.152 0.036

64,006 96,007 513.598 41.266 71.174 43.496 412.374 0.110

128,006 192,007 3,945.000 224.936 318.516 172.808 1,729.816 0.276

Figure 3.2: Performance for AK family graphs. pfs-EB is saturate-const-highest-lifo-pre-0.

3.5.5 Cheriyan

Performance for cheriyan is shown in Figure 3.3. The pfs-EB heuristic combination is

shortest-const-highest-lifo-pre-1.

The results are not very robust. The Dinic solver performs relatively poorly with

smaller instances, but it scales very well. On the two largest instances, it is the fastest

of all of the solvers. The pfs-EB and FIFO push-relabel solvers scale fairly consistently.

On the largest instances, they both beat the highest-label push-relabel, which works well

with smaller instances, but does very poorly on instances with 216 or more nodes. The
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pfs-D solver consistently performs the worst.
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16,367 18,799 1.640 0.634 1.446 2.188 24.884 0.284

32,767 36,839 3.194 2.282 5.000 10.982 213.142 1.208

65,527 72,875 4.682 53.196 16.409 95.986 320.072 2.554

131,047 144,947 6.744 374.078 41.644 543.194 925.816 10.942

262,127 289,135 11.784 1721.740 130.482 error 3335.040 36.660

Figure 3.3: Performance for cheriyan family graphs. pfs-EB is shortest-const-highest-lifo-
pre-1.
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3.5.6 Genrmf Long

Performance for the genrmf-long family of graphs is shown in Figure 3.4. The pfs-EB

heuristic combination is greedy-deficit-highest-lifo-pre-0. The highest-label solver is the

faster of the push-relabel solvers. Although the highest-label push-relabel solver is faster

than the three pseudoflow solvers for problem instances up to n = 216, for larger instances

the pfs-D and pfs-EB solvers are faster. Also, all of the other solvers beat the Dinic solver.
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15,488 71,687 3.636 0.120 0.260 0.276 0.158 0.146

30,589 143,364 13.609 0.275 0.790 0.601 0.356 0.334

65,536 310,040 64.995 0.692 2.403 1.572 0.859 0.788

130,682 625,537 199.318 2.439 6.674 3.639 1.941 1.721

270,484 1,306,607 706.585 8.058 22.742 8.807 4.608 4.185

Figure 3.4: Performance for genrmf-long family graphs. pfs-EB is greedy-deficit-highest-
lifo-pre-0.
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3.5.7 Genrmf Wide

Performance for the genrmf-wide family of graphs is shown in Figure 3.5. The pfs-EB

heuristic combination is shortest-const-highest-wave-pre-0. The pfs-EB solver consistently

beats the push-relabel solvers, but the standard heuristic combinations fail to match the

performance of either of the push-relabel solvers. Again, the Dinic solver is the worst

solver.
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16,807 80,262 4.008 0.732 1.009 1.670 3.298 0.578

32,768 157,696 15.316 1.885 3.059 5.326 9.764 1.468

63,503 307,44 60.090 6.831 10.881 14.844 3.688 4.429

135,531 660,45 183.938 16.477 29.409 65.393 88.241 9.863

259,308 1,267,875 525.328 44.593 80.110 143.049 244.186 22.373

Figure 3.5: Performance for genrmf-wide family graphs. pfs-EB is shortest-const-highest-
wave-pre-0.



72

3.5.8 Line Moderate

Performance for the line-moderate family of graphs is shown in Figure 3.6. The pfs-EB

heuristic combination is path-deficit-highest-wave-pre-0. Note that the number of arcs

is approximate because the number of arcs generated is random, based on the random

number seed.

Again, the Dinic solver is the worst followed by pfs-C. The other pseudoflow solvers are

not as fast as the push-relabel solvers, but they are within 50% of both of the push-relabel

solvers. The performance of the pfs-D and pfs-EB solvers is nearly identical, and hence

they are hard to discern in the graph.
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32,770 1,470,473 5.679 0.662 0.771 3.050 0.858 0.846

65,538 4,186,093 16.831 2.158 2.503 9.694 2.860 2.829

131,074 11,910,889 53.776 6.060 7.120 32.075 8.531 8.557

Figure 3.6: Performance for line-moderate family graphs. pfs-EB is path-deficit-highest-
wave-pre-0. The performance of the pfs-D and pfs-EB solvers are nearly identical and are
therefore hard to differentiate in the chart.
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3.5.9 RLG Long

Performance for the rlg-long family of graphs is shown in Figure 3.7. The pfs-EB heuristic

combination is simple-deficit-highest-wave-pre-4. None of the pseudoflow solvers is as fast

as either of the push-relabel solvers, but they are all faster than the Dinic solver. The

performance of all three pseudoflow solvers is rather erratic; the plots all have “kinks,”

and they all converge at n = 218.

0.1

1

10

100

1000

15 16 17 18

tim
e 

- 
lo

ga
rit

hm
ic

size - powers of 2

rlg-long scaling

dinic
prf-hl

prf-fifo
pfs-C
pfs-D

pfs-EB

Nodes Arcs Dinic HL FIFO pfs-C pfs-D pfs-EB

32,770 98,240 8.299 0.169 0.363 0.495 0.969 0.621

65,538 196,544 37.474 0.436 1.284 1.454 1.804 1.363

131,074 393,152 181.188 0.956 3.320 3.892 10.177 8.792

262,146 786,368 514.118 1.671 8.305 21.224 21.841 21.534

Figure 3.7: Performance for rlg-long family graphs. pfs-EB is simple-deficit-highest-wave-
pre-4.

3.5.10 RLG Wide

Performance for the rlg-wide family of graphs is shown in Figure 3.8. The pfs-EB heuristic

combination is simple-const-highest-wave-pre-0.
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The highest-label solver is the faster of the push-relabel solvers, and it is faster than

all of the pseudoflow solvers. The FIFO push-relabel solver is faster than the pseudoflow

solvers for smaller instances, but the performance of FIFO solver diverges at n = 218 where

all the pseudoflow solvers beat the FIFO solver. Although pfs-C beats the highest-label

push-relabel solver for n = 217, this appears to be an anomaly. Again, the Dinic solver is

the worst.
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131,074 391,168 32.679 3.179 3.866 3.122 6.691 4.619

262,146 782,336 110.066 10.405 21.094 12.090 16.206 12.150

Figure 3.8: Performance for rlg-wide family graphs. pfs-EB is simple-const-highest-wave-
pre-0.
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3.5.11 Mining Data

The performance for the synthetic mining data is shown in Figure 3.9 below. (The sum-

mary data in Table 3.3 was a sum of the times of the three instances.) The pfs-EB heuristic

combination is simple-const-highest-wave-pre-0.

The pseudoflow solvers are consistently faster than the PRF solvers. Note that the

FIFO push-relabel solver is faster than the highest-label push-relabel solver in all three

cases.
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Name Dinic HL FIFO pfs-C pfs-D pfs-EB

mine1 71.41 15.52 13.52 8.74 8.48 6.96

mine2 48.87 11.02 10.88 5.69 6.80 5.18

mine3 37.95 11.11 11.04 6.36 6.58 5.41

Figure 3.9: Times to solve three synthetic mining instances. pfs-EB is simple-const-
highest-wave-pre-0. Dinic is not plotted in the figure due to the scale of the data.

In addition to the synthetic mining data, we tested with one data file from a real

mine, Pit2. The performance for all of the solvers on this file is shown in Table 3.3. The

pfs-EB heuristic combination is path-const-lowest-lifo-pre-0. The pfs-C pseudoflow solver
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is slightly slower than the push-relabel solvers, but pfs-D and pfs-EB are considerably

faster than the push-relabel solvers. The FIFO push-relabel solver is slightly faster than

the highest-label push-relabel solver.

Although the synthetic instances and Pit2 are all instances of the open-pit mining

problem, the pfs-EB heuristic combinations are different. In particular, the highest-label

pseudoflow algorithm was best for the synthetic instances, but the lowest-label pseudoflow

algorithm was best for Pit2.

We suspected this was due to some details about the specific data within the data files.

Hochbaum and Chen [HC00] computed the ratio of the average weights of the positive

blocks in a mine divided by the average weights of the negative blocks. Let this ratio be

R. For the synthetic instances, R is approximately 0.5, whereas R = 15.6 for Pit2.

We hypothesized that the highest-label algorithm works better for lower values of R,

and the lowest-label algorithm works better for higher values of R. To test this, we took

the mine1 synthetic instance and perturbed the values of the positive blocks in the mine

to create a series of instances with varying values for R. We solved each instance with

both the highest and lowest label algorithms. The results are shown in Figure 3.10.

This confirms our hypothesis: for smaller values of R, the highest label algorithm is

faster than the lowest label algorithm. For values of R greater than 10, the lowest label

algorithm is slightly faster.
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Figure 3.10: Solution times for the highest- and lowest-label pseudoflow algorithms on a
series of instances derived from mine1. The times are plotted against the value of R for
each instance.
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3.5.12 Scheduling Data

The solution times for the three scheduling minimum cut instances (Table 3.2) are shown

in Table 3.11 below. (The summary data in Table 3.3 was a sum of the times of these

three instances.) The pfs-EB heuristic combination is simple-const-highest-lifo-pre-0.

The FIFO push-relabel solver is faster than highest-label push-relabel, and it is faster

than the standard pseudoflow solvers. For the smallest instance, j 6, FIFO is slightly

faster than pfs-EB, but for the other instances, pfs-EB is significantly faster.
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Name Nodes Arcs Dinic HL FIFO pfs-C pfs-D pfs-EB

j 6 11,617 27,487 20.41 8.80 4.85 10.20 17.14 4.95

j 16 18,393 44,416 55.01 25.71 12.79 19.79 46.10 8.62

j 56 20,565 60,567 88.69 31.92 16.34 34.54 64.62 11.68

Figure 3.11: Times to solve three scheduling instances. pfs-EB is simple-const-highest-
lifo-pre-0.
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3.6 Study of the Performance of the Heuristics

The pfs-EB heuristic combination based on the performance for the modest-sized instance

of each class is shown in Table 3.5. (The heuristic options are summarized in Table 2.1 in

the previous chapter, and the instance sizes are shown in Table 3.3.)

Instance Initial- Initial Root Branch Search Relabel
ization Label Label Management Order Frequency

AC simple const lowest wave pre 0

AK saturate const highest lifo pre 0

cheriyan shortest const highest lifo pre 1

genrmf-long greedy deficit highest lifo pre 0

genrmf-wide shortest const highest wave pre 0

line-moderate path deficit highest wave pre 0

rlg-long simple deficit highest wave pre 4

rlg-wide simple const highest wave pre 0

mine simple const highest wave pre 0

Pit2 path const lowest lifo pre 0

sched simple const highest lifo pre 0

Table 3.5: Best-case heuristics for pseudoflow solver on the modest-sized problems by
instance type.

3.6.1 Initialization

We can see in Table 3.5 that the simple initialization scheme is the best in about half of

the cases. Greedy and path initialization together account for the next largest portion. As

we describe in Section 3.5.4, saturate-all is especially effective on AK graphs. However, it

is not effective for any of the other problem cases.

The path and greedy initialization schemes both build branches and push flow into the

network. The difference is that the path method stops as soon as it encounters a node

with no single arc of sufficient capacity to handle the excess, whereas the greedy technique

will push the flow along multiple arcs.

In some respects, these initialization schemes perform a simplified version of the main

algorithm that merges from strong nodes to weak ones. Therefore, we might expect that

these initialization schemes would reduce the amount of work done by the main algorithm

at the expense of spending more time during initialization.
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To investigate this hypothesis, we looked at the instances where the best heuristic

combination used either path or greedy initialization—Pit2, line-moderate, and genrmf-

long. We also included mine1 because we would expect that greedy and path should both

perform well, even though simple initialization was slightly better during testing.

Table 3.6 shows the data for these instances using simple, greedy, and path initial-

ization. We show the initialization time, solving time, the total time (initialization plus

solving), and the number of mergers performed.

Instance Initial Initialization Init Solve Total Percent Number of
Label Method Time Time Time Init Mergers

Pit2 const simple 0.33 1.98 2.31 14.29% 111,944

greedy 0.59 1.47 2.06 28.64% 55,391

path 0.59 1.46 2.05 28.78% 55,391

mine1 const simple 0.39 6.41 6.80 5.74% 298,396

greedy 0.81 6.17 6.98 11.60% 236,099

path 0.83 6.21 7.04 11.79% 236,099

line-moderate deficit simple 1.43 1.59 3.02 47.35% 116,330

greedy 2.36 1.72 4.08 57.84% 114,092

path 1.41 1.55 2.96 47.64% 116,330

genrmf-long deficit simple 0.18 0.66 0.84 21.43% 138,692

greedy 0.19 0.60 0.79 24.05% 136,960

path 0.19 0.61 0.80 23.75% 133,727

Table 3.6: Initialization, solving, and total time for selected instances where greedy or
path initialization performs well. The “Percent Init” column is the initialization time as
a percentage of the total solving time.

In the first two examples, instances of mining data, greedy and path initialization take

approximately twice as long as simple initialization, and they result in a reduced solving

time and a reduction in the number of mergers. For Pit2, the additional initialization time

is more than offset by the reduced solving time, and it results in a faster overall time. For

mine1, greedy and path initialization reduce the solving time but not sufficiently to offset

the added overhead of the more complex initialization.

Notice that for mining problem instances, greedy and path initialization are virtually

identical in terms of initialization time and mergers during solving. This is expected

because the arcs in the mining graphs that represent dependencies between the nodes

have infinite capacity. Therefore, path initialization will not encounter a node without a
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single arc with sufficient capacity to discharge the excess. Therefore, it will behave the

same as greedy.

In the next instance, line-moderate, simple and path initialization take approximately

the same length of time. This is because the capacity of the arcs into the source-adjacent

nodes greatly exceeds the capacity of any arcs out of the nodes. Therefore, path initializa-

tion is stopped immediately and is effectively the same as simple initialization: both only

saturate the source and sink arcs. This can be seen in the identical number of mergers.

On the other hand, greedy initialization takes considerably longer than the other two. Al-

though this results in a modest reduction in the number of mergers performed, the solving

time is actually higher.

The final instance, genrmf-long, is consistent with our hypothesis; path and greedy

initialization take slightly longer than simple initialization, but both spend about 10%

less time in Phase I compared to simple initialization. The overall running time for path

and greedy is less, and both perform fewer mergers as well.

3.6.2 Initial Labeling

As we see from the best-case heuristics in Table 3.5, the simple, constant labels are usually

the best. The distance to deficit (or sink) is superior in longer graphs: genrmf-long, rlg-

long, and line-moderate.

Distance to deficit or sink labeling is rather expensive compared to simple initialization.

It requires a pass over all of the nodes to initialize their distances, O(n), and the breadth-

first search takes O(m). We see in Table 3.6 above, that even simple initialization when

combined with distance to deficit/sink labeling can take up to half of the total solving

time.

3.6.3 Root Label and Normalization

We tested with three combinations of root label selection and normalization methods:

highest-label (using immediate normalization), lowest-label with immediate normalization,

and lowest-label with delayed normalization (see Table 2.1). As we can see in Table 3.5,

the highest label pseudoflow algorithm is typically better than the lowest label algorithm
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with immediate normalization, and delayed normalization is never the best choice.10 How-

ever, in the case of the AK graph, the performance of lowest label and highest label is

indistinguishable. Delayed normalization (for the lowest label algorithm) is never the best.

We believe that the superior performance of the highest label pseudoflow algorithm is

similar to the superior performance of the highest label push-relabel algorithm. Goldberg

and Cherkassky [GC97] suggested that “nodes on the source side of a cut are more likely

to be processed than other nodes.” The highest label algorithm tends to generate gaps

which are recognized by the gap relabeling heuristic and causes the relevant nodes to be

relabeled to n.

For the pseudoflow algorithm, the highest label algorithm tends to generate gaps that

result in individual strong branches being pruned earlier, rather than waiting for a gap to

exist between all strong nodes and the weak nodes, as happens with the early termination

rule for the lowest label algorithm. Also, the highest label algorithm will tend to work

with strong branches on the source side of the cut before processing lower-labeled branches

closer to the sink (on the other side of the cut). On the other hand, the lowest label

pseudoflow algorithm will tend to operate on branches on the sink side of the cut and to

deliver excess to the sink-adjacent nodes as early as possible.

3.6.4 Branch Management

Table 3.5 shows that either the LIFO or wave branch management policy is the best-case

heuristic in all of the modest-sized instances, with wave being superior in six out of ten

cases. FIFO is never the best.

In Table 3.7 we look at the modest-sized instances using the same best-case heuristics

from Table 3.5, and we include all three branch management heuristics. Each cell contains

the execution time (in seconds) as well as the relative performance (best is 100).

We can see that wave is the best choice overall. In the worst case (Sched), wave is only

20% worse than the best heuristic (LIFO), and in all other cases, it is either the best or

nearly indistinguishable from LIFO.

10The occurrences of “lowest” in Table 3.5 correspond to lowest label with immediate normalization—see
Table 2.1.
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Instance LIFO FIFO Wave

AC 1.723 1.647 1.443
119 114 100

genrmf-long 0.693 0.703 0.695
100 101 100

genrmf-wide 3.812 3.577 3.487
109 103 100

line-moderate 2.56 2.58 2.53
101 102 100

rlg-long 0.608 0.606 0.594
102 102 100

rlg-wide 8.01 1.558 1.496
535 104 100

Pit2 1.56 2.08 1.58
100 133 101

Sched 4.48 5.28 5.36
100 118 120

Mine 7.07 6.72 6.47
109 104 100

Table 3.7: Comparison of branch management heuristics on modest-sized instances.

3.6.5 Search Order

As we expected, pre-order searches are superior to post-order, which never appears in a

best-case heuristic combination. A very dramatic example of this can be seen in the table

below. It shows the simple-const-highest-lifo pseudoflow solver with pre- and post-order

searches for a genrmf-long problem instance (x = 16, i.e. n = 216).

Search Order Cut Time Num Mergers Num Pushes Push/Merger

pre-order 4.00 318,019 2,673,206 8.41

post-order 73.51 734,009 73,057,320 99.53

The post-order search resulted in twice as many mergers, but the average length of the

pushes during the mergers (the number of pushes per merger) was an order of magnitude

larger than for the pre-order search.

3.6.6 Global Relabeling

Contrary to the experiences of most authors implementing push-relabel, global relabeling

does not seem to be important for pseudoflow. Global relabeling was the best for rlg-long
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and cheriyan. For rlg-long, the difference between global relabeling (with a frequency

4n) and no global relabeling is insignificant—less than 1%. For cheriyan, the difference

between global relabeling (with a frequency n) and no global relabeling is 19%, which is

significant, but not the order of magnitude difference that previous authors found for the

push-relabel algorithm.

That said, we did select a relabeling frequency of 4n for the pfs-C standard heuristic

combination. It was superior to no relabeling in only half of the instances, but it was

superior in a few crucial cases such as the line-moderate graph where no relabeling actually

runs slower than the Dinic solver.

So, for some heuristic combinations (e.g., those used with rlg-long, cheriyan, and pfs-

C), global relabeling can be a benefit. However, in the majority of cases, the best heuristic

combination did not use global relabeling.

Initially, we assumed that performing global relabeling more frequently would always

result in fewer operations being performed, but that the time spent performing global

relabeling might outweigh the performance benefit. We did not directly collect data on

the time spent performing global relabeling, but we can look at the number of operations

performed by the algorithm and the total running time.

Table 3.8 contains data for two problem instances solved with all five relabeling fre-

quencies we tested with. For each, we show the number of mergers, number of pushes,

number of arcs scanned, the time to establish the cut, and the number of global relabeling

operations that were performed.

For the first instance (genrmf-wide), we can see that performing global relabeling most

frequently (every n/2 relabel operations) actually results in more mergers, pushes, and

scans compared to only performing it every n relabel operations. Performing no global

relabeling provides the fastest performance even though it performs more pushes and arc

scans than the 2n frequency. It performs more work (pushes and scans) but runs faster,

most probably due to the overhead of the global relabeling paid by the 2n relabel heuristic.

The second instance (genrmf-long) fits our initial assumptions better: more frequent

global relabel operations result in fewer operations but a slower running time, most likely

due to the overhead of global relabeling. Notice that no relabels are performed in the 4n
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none n/2 1n 2n 4n

genrmf-wide mergers 149,681 250,248 186,849 164,691 168,981

pushes 4,664,416 3,754,272 3,251,837 3,769,871 4,342,643

scans 5,487,889 7,258,556 5,047,986 4,794,707 5,631,558

cut time 4.84 11.68 6.36 5.47 5.41

relabels 0 27 8 4 2

genrmf-long mergers 137,904 136,915 137,059 137,153 137,904

pushes 299,491 284,785 286,284 287,717 299,491

scans 1,908,573 1,523,850 1,557,405 1,598,801 1,908,573

cut time 0.92 1.55 1.21 1.07 0.93

relabels 0 4 2 1 0

Table 3.8: Effects of global relabeling performed at various frequencies.

case; the solver completes before the first global relabeling operation.

3.6.7 Flow Recovery—Phase II

As mentioned in Section 2.2.3, flow recovery is expected to be a small percentage of the

total solution time. This is generally true for both the pseudoflow algorithm and push-

relabel, as shown in Table 3.9. The table shows the total time to compute the maximum

flow, the time spent performing flow recovery, and the percentage of the total time that

was spent in flow recovery.

As a percentage of the solution time, flow recovery for the pseudoflow solver is faster

than push-relabel in all but two cases: cheriyan and rlg-long. In the case of rlg-long, the

pseudoflow solver spends 40.57% of its time performing flow recovery compared to only

18.35% for push-relabel—a difference of 22%. However, in the worst case for the push-

relabel algorithm performing flow recovery (line-moderate), push-relabel spends 56.58%

of the time in flow recovery versus 10.89% for the pseudoflow solver–a difference of 45%.

Therefore, both algorithms have instances where flow recovery takes 40% or more of the

solving time, but the worst case for the pseudoflow solver is better than the worst case for

the push-relabel solver.

3.6.8 Simplex

As expected, the simplex pseudoflow algorithm performs poorly. Table 3.10 contains some

sample runs comparing the lowest label algorithm using the normal (pseudoflow) merger
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Instance Solver Total Time Flow Recovery Percent
Time of Total

AC HL 3.89 0.337 8.67%
pfs-EB 1.752 0.117 6.68%

AK HL 10.414 0.014 0.13%
pfs-EB 0.036 0.002 5.56%

cheriyan HL 53.196 0.156 0.29%
pfs-EB 2.554 0.054 2.11%

genrmf-long HL 0.692 0.112 16.18%
pfs-EB 0.788 0.073 9.26%

genrmf-wide HL 6.831 1.798 26.32%
pfs-EB 3.688 0.087 2.36%

line-moderate HL 2.158 1.221 56.58%
pfs-EB 2.829 0.308 10.89%

rlg-long HL 0.436 0.080 18.35%
pfs-EB 1.363 0.553 40.57%

rlg-wide HL 1.375 0.091 6.62%
pfs-EB 1.921 0.053 2.76%

Table 3.9: Flow recovery times for push-relabel (HL) and pseudoflow(pfs-EB) on modest-
sized instances. (Mining and scheduling data are omitted because those applications are
only concerned with minimum cuts.)

procedure and the simplex merger procedure. The poor performance of the simplex solver

is due to the increased branch size, as indicated by the number of pushes per merger

performed by the simplex solver. This is expected since the simplex solver only performs

one split operation per merger, whereas the pseudoflow merger procedure can perform

multiple splits, creating a number of smaller branches.

Time Pushes per Merger
pseudo simplex pseudo simplex

genrmf-long 46.59 68.27 114.2 171.0

genrmf-wide 27.85 50.58 98.1 193.1

line-moderate 8.53 25.57 121.1 695.8

rlg-long 29.56 36.62 16.1 29.0

rlg-wide 28.81 48.66 39.5 65.1

Table 3.10: Sample solution times and number of pushes for simplex and lowest-label
pseudoflow solvers on modest-sized instances.
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3.7 Conclusion

Although the push-relabel algorithm has a slightly better theoretical complexity, we have

shown that our implementation of the pseudoflow algorithm performs very well in prac-

tice. The performance of the pseudoflow solver is better in many cases than the more

mature push-relabel implementation. This is significant for a first implementation of a

new algorithm compared to a very mature implementation of a comparatively old and

well-studied algorithm.

Many of the heuristics for the pseudoflow algorithm demonstrate significant improve-

ments in the performance of the implementation even though they have no theoretical ad-

vantage. In particular, the highest label algorithm and the early termination rules (both

new in this work) deliver superior performance for the pseudoflow family of algorithms.

The heuristics allow the implementation to be easily tuned for a given application.



Chapter 4

Parametric Analysis

In this chapter, we present a new type of maximum flow/minimum cut problem where

the capacities of the arcs are functions a single parameter. Gallo, Grigoiadis, and Tarjan

[GGT89] presented a specific form of parametric maximum flow problem and showed how

the push-relabel algorithm can be used as a subroutine to solve this parametric problem

efficiently. Hochbaum [Hoc97] showed how the pseudoflow algorithm can also be used to

solve these same types of problems efficiently.

Prior to this work, neither of these parametric algorithms had been implemented. The

practical performance of the parametric algorithms had never been compared to simple,

brute force application of the nonparametric maximum flow implementations.

In the previous chapter, we show that that our implementation of the pseudoflow

algorithm is very competitive with the best implementation of the push-relabel algorithm

for nonparametric problems. In this chapter, we present the experimental results of our

implementations of the parametric push-relabel and pseudoflow algorithms compared to

their nonparametric counterparts.

Our results show that both of the parametric algorithms are superior to their nonpara-

metric counterparts. Both implementations execute considerably faster and require many

fewer operations to solve parametric instances for a series of parameter values.

4.1 Introduction

Sensitivity analysis is well developed for linear programming and network flows (e.g.,

[BT97]). We can use sensitivity analysis to solve a number of similar problems that

88
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differ only in the value of a single parameter without solving each individual problem

from scratch—i.e., we can use information from one solution to aid in the solution of

subsequent instances.

When solving linear programming problems, we can use sensitivity analysis to observe

how the optimal solution is affected by changes to the value of a single parameter. For

example, we might want to know how the value of the objective function changes as the

value of the parameter changes, or we might want to know the range of parameter values

for which the basis remains optimal.

There are applications of the maximum flow (or minimum cut) problem where the

arc capacities are not fixed, but rather the capacities are functions of a single parameter.

We might wish to know how the value of the maximum flow changes as the value of the

parameter changes or how the minimum cut (or source set of the minimum cut) changes as

the value of the parameter changes. Also, we might have a set of values for the parameter

and wish to solve for the maximum flow (or minimum cut) for each of the parameter

values.

Gallo, Grigoiadis, and Tarjan [GGT89] define a specific type of parametric network (see

below) where the capacities of the source and sink arcs are functions of single parameter.

Let Gλ(V,A) be a parametric network where the capacities are functions of a real-valued

parameter λ. Denote the capacity of an arc (i, j) as a function of the parameter value λ

by cij(λ) and assume the functions have the following properties:

• csv(λ) is a monotone, non-decreasing function of λ for all v 6= t.

• cvt(λ) is a monotone, non-increasing function of λ for all v 6= s.

• cuv(λ) is constant for all u 6= s and v 6= t.

As λ increases, the capacities of the arcs out of the source can only increase, and the

capacities of the arcs into the sink can only decrease. The capacities of the other arcs

remain constant.

At first glance, this structure of Gλ(V,A) and the properties of cuv(λ) might appear to

be artificial and restricted. In fact, there are a large number of applications that can be

made to fit into this structure (see Section 4.2). Once formulated in this structure, these



90

problems can be solved efficiently for a sequence of values of λ by exploiting properties

of the network structure and properties of certain algorithms to solve the maximum flow

problem.

Let Sλ be the minimal source set1 of a minimum s-t cut in Gλ. For a sequence of

values of λ, λ1, λ2, . . . , λk, we say that the minimal source sets of the minimum cuts are

nested if Sλ1
⊆ Sλ2

⊆ Sλ3
. . . ⊆ Sλk

.

Lemma 4.1.1 Given an ordered sequence of parameters, λ1 < λ2 < . . . < λk, the minimal

source sets for the s-t minimum cuts for these values are nested—i.e., Sλ1
⊆ Sλ2

⊆

Sλ3
. . . ⊆ Sλk

.

This property was observed by a number of authors including Eisner and Severance

[ES76] and Stone [Sto78], and it was proven in the context of the parametric push-relabel

algorithm by Gallo, Grigoiadis, and Tarjan [GGT89].

Due to this property, the following is clear:

Lemma 4.1.2 There are at most n−1 possible, distinct s-t minimum cuts in Gλ regardless

of the number of values of λ.

Based on the network defined by Gallo, Grigoiadis, and Tarjan, Hochbaum [Hoc97]

defines the following two types of parametric analysis that can be performed:

Definition 4.1.3 Simple sensitivity analysis: given an ordered series of values of λ, com-

pute the maximum flow (or minimum cut) in Gλ for each value of λ.

Definition 4.1.4 Complete parametric analysis: compute the breakpoint values of λ where

the minimal source set of the minimum cut in Gλ changes.

It is well known that for nonparametric graphs, the minimum cut problem is related to

the maximum flow problem (e.g., [AMO93]). Given a maximum flow (specified by the flow

1Note that Gallo, Grigoiadis, and Tarjan [GGT89] discuss this property and the lemma that follows in
terms of “the minimum cuts produced by the algorithm” because the authors define a cut as the partition
of nodes rather than the set of arcs between the partition of nodes, as we did in Chapter 1. However,
since the minimum cut (set of arcs) for a given value of λ is not necessarily unique, the source set is not
necessarily unique. Hochbaum [Hoc97] clarifies this by specifying “the minimal source set” of the minimum
cut, and we adopt the same terminology.
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values on every arc in the graph), it is easy determine the minimum cut. Therefore, the

minimum cut problem is often solved using a maximum flow algorithm. However, given

only a minimum cut (specified by the set of saturated arcs between the source set and sink

set), the worst-case complexity of finding the corresponding maximum flow is comparable

to solving the maximum flow problem without any prior knowledge of the minimum cut.

In fact, many of the parametric applications in the literature are parametric minimum

cut problems (e.g., see Section 4.2). In these cases, parametric maximum flow algorithms

are used to find a maximum flow from which a minimum cut or the source set of a minimum

cut can easily be found. As we shall see, some parametric algorithms can identify the

minimum cut for a given parameter value without identifying a feasible maximum flow.

Gallo, Grigoiadis, and Tarjan presented algorithms for solving these particular types

of parametric maximum flow problems based on the push-relabel algorithm. Using the

dynamic trees with the FIFO variant of push-relabel, the algorithm can perform simple

sensitivity analysis on O(n) parameter values with the same worst-case complexity as a

single run of the push-relabel algorithm. Gallo, Grigoiadis, and Tarjan also showed that

if the capacity functions are restricted to being linear, the parametric maximum flow

algorithm can be used as a subroutine to perform complete parametric analysis with the

same worst-case complexity as a single run of the push-relabel algorithm.

Hochbaum [Hoc97] showed how the pseudoflow algorithm can also be used to solve

these problems efficiently. The parametric pseudoflow algorithm can perform simple sen-

sitivity analysis on O(m log n) parameter values with complexity equal to that of a single

run of the pseudoflow algorithm. The parametric pseudoflow algorithm can also be used to

perform complete sensitivity analysis with the same complexity as a single run, assuming

the capacity functions are linear.

In order to perform simple sensitivity analysis given a parametric network in the form

of Gλ(V,A) described above and an ordered series of values for λ, we have the choice of

either creating separate nonparametric graphs for each value of λ and solving them with

a nonparametric solver, or we could use a parametric algorithm in the hope that it would

run faster. If we choose to use a parametric solver, there is a choice of possible parametric

solvers. In this chapter, we consider two possible parametric algorithms: the push-relabel
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based algorithm of Gallo, Grigoiadis, and Tarjan and the pseudoflow based algorithm of

Hochbaum.

In the remainder of this chapter, we present some applications that can be formulated

as this type of parametric network, and we investigate the performance of the alternatives

facing us.

4.2 Applications

There are a number of applications for parametric maximum flow/minimum cut algo-

rithms. In fact, most of the applications in the literature are parametric minimum cut

problems. In these cases, the parametric maximum flow algorithms are used to find a

maximum flow from which the minimum cut can easily be found. This means that for

each parameter value, we produce additional information (e.g., flow values) beyond the

minimum cut required by the application. When we discuss the particular algorithms in

the following sections, we will see that there is a slight difference in their capabilities with

regards to cuts versus flows.

In this section, we describe the open-pit mining and image segmentation applications,

for which we present experimental results later in the chapter. We also briefly describe a

number of additional applications from the literature.

• Open-pit mining: instances of the open-pit mining problem (e.g., see Johnson [Joh68])

are naturally suited for this type of parametric analysis. In the open-pit mining prob-

lem, a volume of earth is represented as a series of blocks. In order to remove a block

(to gain its economic value), all the of the blocks in a cone above the block must

also be removed. Each block of ore in the mine is represented as a node in the

graph. There is an arc from a node to the nodes that represent blocks immediately

above the block. These arcs have infinite capacity so that a minimum cut (of finite

capacity) will not include any of these arcs and thus ensure that we remove all of the

blocks above the given block. In other words, the set of nodes representing blocks

that we extract defines a closure in the graph.

The economic value of block and the cost to remove it are represented by a pair

of arcs. Each node has a parametric arc to both the source and the sink. The
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capacities of these ares are linear functions: csv(λ) = max(0, a + bλ) and cvt(λ) =

−min(0, a+bλ), where λ represents the value of a unit of the ore being mined, b ≥ 0

represents the quantity of ore in a block, and a ≤ 0 represents the cost to extract

the ore from the block. Solving a series of minimum cut problems with a series of

values of λ represents a simulation of the effects of a series of values for the price of

the ore.

• Image segmentation: Hochbaum [Hoc01] presented an application of complete para-

metric analysis for image segmentation, which can also be solved using simple para-

metric analysis. An image is represented by a grid of pixels. Each pixel takes on

a single integer value from zero to k that represents the color or grayscale value of

the pixel. The image is transmitted and degraded by noise. The goal is to modify

the pixel values to conform with prior information about the image by minimizing

a penalty function composed of two terms: the first term penalizes the deviation

from the initial pixel value as a convex function, and the second term penalizes the

difference in colors between neighboring pixels. Hochbaum showed how this problem

can be solved by parametric minimum cut to identify new values for the pixels that

minimize the total penalty.

Hochbaum constructs a parametric graph Gλ = (V,A) where each pixel is repre-

sented as a node j ∈ V . Let pj(λ) represent the penalty function for deviation of

pixel j from its original value. This is represented in the graph as two arcs: one

from s to the node with csj(λ) = −min{0, p′j(λ)}, and one from the node to the sink

with cjt(λ) = max{0, p′j(λ)}, where p′j(λ) is the derivative or subgradient of pj at

λ. Each node has arcs to each of its two, three, or four neighbors with a constant

capacity representing a penalty for discontinuities in terms of separation of color

between adjacent pixels. The parameter values take the same values as the pixels:

integers from 0 to k representing the spectrum of colors. For each value of λ, the

source set of the minimum cut in Gλ identifies the set of pixels that should have a

value less than or equal to λ, and the sink set represents those pixels that should

have a value greater than λ.
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Gallo, Grigoiadis, and Tarjan [GGT89] presented a large number of applications for

parametric maximum flow/minimum cut including the following:

• Flow sharing: consider a network with k source nodes and a single sink. Define the

utilization ui of a source si as the flow out of source si, and suppose each source has

a positive weight wi associated with it. There are a number of possible optimization

problems called “flow sharing” based on the ratio ui/wi:

Perfect sharing: Find a maximum flow such that ui/wi is equal for all i.

Maximin sharing: Find a maximum flow that maximizes the smallest value of ui/wi.

Minimax sharing: Find a maximum flow that minimizes the largest value of ui/wi.

Optimal sharing: Find a maximum flow that simultaneously maximizes the smallest

value and minimizes the largest value of ui/wi.

• Maximum density subgraph: Goldberg [Gol84] described the problem of finding the

maximum density subgraph in an undirected graph. The density of a subgraph is

the ratio of the number of edges to number of nodes in the subgraph. The objective

is to identify a non-empty subgraph with maximum density.

• Strength of a network: Cunningham [Cun85] described the problem of computing

the strength of a network. The goal is to disconnect a set of nodes from the source

node by removing a subset of edges in the graph. Associated with each node is a

value attributed to having the node reachable from the source, and associated with

each arc is a cost. The ratio of the total cost to the total value is the cost per unit

reduction, and the objective is to minimize this ratio over all subsets of arcs.

Other more recent applications include:

• Baseball elimination: there are a number of questions related to a baseball team’s

standing at the end of a season and whether the team has been eliminated from the

play-offs. Schwartz [Sch66] showed that a maximum flow calculation can determine

when a team has been eliminated from first place. Gusfield and Martel [GM92]

showed how parametric maximum flow can be used to compute the minimum number

of games a team must win to avoid elimination, and McCormick [McC99] improved

the complexity result.
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• Bar-Noy and Kortsarz [BNK98] used parametric maximum flow to solve a variant

of the selection problem called the 2-neighbor program. This, in turn, is used to

approximate the minimum color sum of a bipartite graph in which the colors of

the vertices of a graph are such that the sum (or average) of all assigned colors is

minimum.

• Margot, Queyranne, and Wang [MQW00] discussed a scheduling algorithm for N

jobs on a single machine with a partial ordering. The authors used parametric

maximum flow to identify a decomposition of the jobs such that an optimal schedule

is obtained from the schedules of the job subsets in the decomposition.

• Frederickson and Solis-Oba [FSO97] presented algorithms for computing the robust-

ness function of a matroid. For traversal matroids, they presented an algorithm

based on parametric maximum flow that improves on the time complexity of their

algorithm for arbitrary matroids.

• Fleischer [Fle01] presented algorithms for dealing with flows over time, which are

also referred to as dynamic network flows in some papers. The author used paramet-

ric maximum flow to show that the quickest transshipment problem with a single

sink (also known as the evacuation problem) can be solved with k maximum flow

computations, where k is the number of source nodes in the network. The author

also used parametric maximum flow to solve the single sink, universally quickest

transshipment problem in the same asymptotic time as one maximum flow problem

using the parametric push-relabel algorithm.

Note that most of the applications listed above (and all of the ones we tested with)

are interested in identifying the minimum cut rather than the maximum flow; parametric

maximum flow is used to find the minimum cut.

4.3 Simple Parametric Push-Relabel Algorithm

Gallo, Grigoiadis, and Tarjan [GGT89] presented an algorithm called the parametric push-

relabel algorithm for solving the simple sensitivity analysis problem.2 Given a parametric

2Gallo, Grigoiadis, and Tarjan also presented an algorithm for complete parametric analysis.
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network Gλ = (V,A) with source s, sink t, capacity functions cuv(λ), and an ordered

sequence of parameters, λ1 < λ2 < . . . < λk, the parametric push-relabel algorithm oper-

ates by applying the push-relabel algorithm to the parametric network Gλ with successive

values of λi. Once the push-relabel algorithm has computed the maximum flow and the

source set of the minimum cut Sλi
, we can apply the next parameter value λi+1 to the

capacities, adjust the flows with respect to the new capacities, and continue solving (us-

ing the push-relabel algorithm) with the existing values for the distance labels and the

adjusted flow values.

The algorithm is initialized for the first value of λ like the nonparametric push-relabel

algorithm by setting the distance labels d(v) and the initial preflow f as follows: d(s) = n,

d(v) = 0 ∀v 6= s, and the arcs out of the source are saturated, f(s, v) = csv(λ1), f(u, v) = 0

∀u 6= s.

We solve for the maximum flow in Gλ1
using the push-relabel algorithm. We solve

subsequent instances of Gλi
using the following steps:

After solving for the maximum flow for the previous parameter value λi−1, we adjust

the capacities and flows on the source and sink arcs. For arcs out of the source, we set

f(s, v) = csv(λi).
3 However, if d(v) ≥ n, we know that v is part of the source set of the

minimum cut, and by the nesting property, we know it will be in the source set for all

successive values of λ. This implies that there is no output for any additional flow from s

into v. Therefore, we only adjust f(s, v) if d(v) < n.

For arcs into the sink, the new capacity may be less than the existing flow. Therefore,

we set f(v, t) = min{f(v, t), cvt(λi)}.

We solve for a new maximum flow with the existing label values d(v) and new values

for f(u, v) and cuv(λi). After solving for a maximum flow in Gλi
, the minimal source set

Sλi
of the minimum cut is the set of all nodes with d(v) ≥ n.

procedure parametricPushRelabel(V,A, s, t, cuv(λ), {λ1 . . . λk}):
d(s) = n, d(v) = 0 ∀v 6= s, f = 0
〈〈first iteration〉〉
foreach neighbor v of s:
f(s, v) ← csv(λ1)

3In Gallo, Grigoiadis, and Tarjan, this is specified as max{f(s, v), csv(λi)}, but it is easy to see that
this is always csv(λi).
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〈〈solve maximum flow problem with push-relabel algorithm〉〉
call push-relabel(V,A, s, t, cuv(λ1), f, d)
Sλ1
← {v : d(v) ≥ n}

for i ← 2 to k:
foreach neighbor v of s, v /∈ Sλi−1

:

f(s, v) ← csv(λi)
foreach neighbor v of t:
f(v, t) ← min(f(v, t), cvt(λi)
〈〈solve maximum flow problem with push-relabel algorithm〉〉
call push-relabel(V,A, s, t, cuv(λi), f, d)
Sλi
← Sλi−1

∪ {v : d(v) ≥ n}

Gallo, Grigoiadis, and Tarjan [GGT89] proved the correctness of the algorithm, which

can be summarized in the following theorem.

Theorem 4.3.1 During the execution of the parametric push-relabel algorithm, after up-

dating the capacities and flows on the arcs for a new parameter value, the modified f is a

preflow, and the distance labels d are valid for the modified f—i.e., d(v) ≤ d(w) + 1 for

every residual arc (v, w).

After solving the first instance, the additional time required to solve the subsequent

instances is composed of the time to adjust the flows and capacities and the time to invoke

the push-relabel solver. For each iteration, the time to adjust the capacities and flows of

the source and sink arcs is O(n). The total time to output the source sets (after calling

push-relabel on each instance) is O(n). Therefore, for k values of the parameter, the time

required for these steps is O(kn).

Gallo, Grigoiadis, and Tarjan [GGT89] analyzed the additional time spent solving the

k − 1 instances of Gλ after solving the first instance. They analyzed three variants of the

parametric push-relabel algorithm (generic, FIFO, and FIFO with dynamic trees) using

methods analogous to those used by Goldberg and Tarjan [GT86] for the nonparametric

push-relabel algorithm. The analysis focuses on the number of non-saturating pushes

using the same potential function Φ (the sum of the labels of the active nodes) used

by Goldberg and Tarjan. The generic and FIFO algorithms perform O(n2) additional

non-saturating pushes per parameter value, and the FIFO algorithm with dynamic trees

performs O(m log(n2/m)) non-saturating pushes per parameter value. In all cases, the
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total time spent solving k instances when k = O(n) is the same as a single run of the

corresponding push-relabel algorithm

Gusfield and Tardos [GT94] analyzed the parametric push-relabel algorithm using the

highest label variant of push-relabel with and without dynamic trees by combining the

analysis of Cheriyan and Maheshwari [CM89] for nonparametric highest-label with the

parametric techniques of Gallo, Grigoiadis, and Tarjan. For both forms of the highest

label algorithm, the total time spent solving O(n) instances is the same as a single run of

the corresponding variant of the highest label algorithm.

In Table 4.1 below, we show the complexity for a single run, k runs, and O(n) runs for

each variant of the parametric push-relabel algorithm. For all variants, the complexity for

O(n) runs is the same as a single run. This can be summarized in the following theorem

from Gallo, Grigoiadis, and Tarjan [GGT89].

Theorem 4.3.2 Using dynamic trees for the push-relabel algorithm, the overall worst-case

complexity for the parametric push-relabel algorithm for k parameter values is O(m(n +

k) log(n2/m)).

Variant Single Run k runs O(n) runs

Generic [GGT89] n2m n2m+ n2k + kn n2m

FIFO [GGT89] n3 n3 + n2k + kn n3

Highest Label [GT94] n2√m n2√m+ (n1.5
√
mk + n1.5k) + kn n2√m

Dynamic Tree nm log (n2/m) nm log (n2/m) + km log (n2/m) + kn nm log (n2/m)
FIFO [GGT89]

Dynamic Tree nm log (n2/m) nm log (n2/m) + kn log (n2/m) + kn nm log (n2/m)
Highest Label [GT94]

Table 4.1: Complexities for parametric push-relabel algorithms. The complexity expres-
sions for k runs are composed of three terms: the time spent solving the first instance with
the indicated push-relabel algorithm, the additional time spent solving the subsequent in-
stances, and the time to update the capacities and flows for each value of λ.

4.3.1 Solving for Maximum Flow versus Minimum Cut

Many applications require finding a minimum cut rather than a maximum flow. Since

there is no known algorithm to find the minimum cut that does not involve at least as

much work as finding the maximum flow, maximum flow algorithms are typically used
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to solve for minimum cuts. Given a maximum flow produced by such an algorithm, a

minimum cut can be easily be identified.

The majority of applications of simple parametric analysis are actually only interested

in identifying a minimum cut, the source set of a minimum cut, or the value of the

minimum cut for each value of λ. Gallo, Grigoiadis, and Tarjan [GGT89] presented a

variant of simple parametric analysis using the push-relabel algorithm that they called

the min-cut parametric algorithm.

During each iteration of the parametric algorithm when the push-relabel algorithm is

called to solve for a new maximum flow, we instead invoke the first phase of a two-phase

push-relabel algorithm [GT86] which only regards nodes to be active if ef (v) > 0 and

d(v) < n. At the end of the first phase of the two-phase push-relabel algorithm, the result

is a maximum preflow where the the nodes with excess have labels greater than or equal

to n, which indicates that they have no path to t in Gf [GGT89].

After substituting the first phase of the two-phase algorithm for the complete single-

phase algorithm, the rest of the parametric push-relabel algorithm is unchanged. The

result of each iteration of this new parametric push-relabel algorithm is a (maximum)

preflow, rather than a feasible flow. The minimal source set of the minimum cut Sλi
is

the set of nodes with d(v) ≥ n. From this preflow, the minimum cut can be identified in

linear time.

The following theorem follows from Gallo, Grigoiadis, and Tarjan [GGT89], although

the authors do not explicitly state or prove such a theorem.

Theorem 4.3.3 The min-cut parametric algorithm using the first phase of a two-phase

push-relabel algorithm is correct, and the complexity is the same as using a single-phase

push-relabel algorithm.

Proof: We prove this by induction on the iteration number. After the first value of λ, f

is a valid preflow and the labels d(v) are valid because that is the result of the first phase

of the two-phase push-relabel algorithm. By the inductive hypothesis, assume that the

first k − 1 iterations maintain a valid preflow f and valid labels d(v).

After adjusting the capacities and flows at the beginning of iteration k, f is a still a

valid preflow because the adjustment procedure only increases the excess of nodes (other
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than s and t), and the flows on each arc are adjusted such that the capacity constraints are

maintained. The labels d(v) are valid for the same reason they were when using the single-

phase algorithm (see Theorem 4.3.1): the only new residual arcs created by adjusting the

capacities and f are of the form (s, v) for nodes with d(v) ≥ n and (v, s) for nodes with

d(v) < n. After calling the first phase push-relabel, f is a valid preflow, and the labels

are still valid. Therefore, the algorithm is correct throughout its execution.

The complexity of the first phase of a two-phase algorithm is identical to that of a

single-phase push-relabel algorithm [GT86], and the rest of the parametric algorithm is

unchanged. The labels do not decrease during the execution of the algorithm, and their

maximum value is still bounded by 2n−1. Therefore, the complexity of min-cut parametric

algorithm is unchanged.

4.4 Simple Parametric Pseudoflow Algorithm

Hochbaum [Hoc97] showed how the pseudoflow algorithm can be used to solve simple and

complete parametric analysis problems. The parametric extension of the pseudoflow algo-

rithm achieves a similar, but slightly better, complexity result than that of the parametric

extension to the push-relabel algorithm; the parametric pseudoflow algorithm can solve a

simple parametric problem for k parameter values with the same complexity as a single

run plus O(kn). The parametric pseudoflow algorithm can solve O(m logn) instances with

the same complexity as a single run.

Given a parametric network Gλ = (V,A) with source s, sink t, capacity functions

cuv(λ), and an ordered sequence of parameters, λ1 < λ2 < . . . < λk, the parametric

pseudoflow algorithm begins by constructing an initial pseudoflow using any of the ini-

tialization procedures in Section 2.6.1. The parametric pseudoflow algorithm proceeds

by repeatedly invoking Phase I, once for each value of λ. Once Phase I is complete for

a parameter value, the flows and capacities are adjusted for the next parameter value

by increasing the flows on the arcs out of the source to match their new capacities and

reducing the flows on the arcs into the sink to match their new capacities.

Hochbaum showed that nodes with labels greater than or equal to n are in the source

set Sλi
and will continue to be in the source set for all subsequent parameter values.
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Therefore, we only need to update the capacities and flows of arcs from the source to

those nodes that are not already in the source set—i.e., those nodes such that d(v) < n.

After adjusting the flows and capacities, the resulting pseudoflow may violate the

normalized forest properties because positive excess may be created at source-adjacent

nodes that are not the roots of branches. Therefore, we renormalize the entire forest by

pushing the excess towards the root, splitting the branches as needed. This can be done

by traversing each branch via a post-order traversal to renormalize from the leaves up to

the root. As shown by Hochbaum, this procedure can be performed in O(n) time.

After establishing a new normalized forest for the capacities cuv(λi), the pseudoflow

solver is called again. The entire algorithm is shown below. Since the parametric algorithm

can be used with the generic, lowest label, and highest label variants of the pseudoflow al-

gorithm, we use the procedure pseudoflowPhaseI(V,A, s, t, c) which can be substituted for

Phase I of any particular variant of the pseudoflow algorithm. Let renormalize(V,A, f, c, par)

denote the procedure to renormalize the tree structure after adjusting the flows for a new

parameter value.

procedure parametricPseudoflow(V,A, s, t, cuv(λ), {λ1 . . . λk}):
〈〈first iteration〉〉
call genericInit(V,A, s, t, cuv(λ1))
call pseudoflowPhaseI(V,A, s, t, cuv(λ1))
Sλ1
← {v : v is strong}

for i ← 2 to k:
foreach neighbor v of s, v /∈ Sλi−1

:

f(s, v) ← csv(λi)
foreach neighbor v of t, v /∈ Sλi−1

:

f(v, t) ← cvt(λi)
call renormalize(V,A, f, cuv(λi), par)
〈〈execute Phase I of the pseudoflow algorithm〉〉
call pseudoflowPhaseI(V,A, s, t, cuv(λi))
Sλi
← Sλi−1

∪ {v : v is strong}

Hochbaum [Hoc97] proved the following theorems related to the correctness and com-

plexity of the parametric pseudoflow algorithm.

Theorem 4.4.1 During the execution of the parametric pseudoflow algorithm, after ad-

justing the capacities and flows for a new parameter value and renormalizing the branches,

the properties of the normalized forest and node labels still hold.
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Theorem 4.4.2 Using the highest and lowest label pseudoflow algorithms with dynamic

trees, the overall worst-case complexity for the parametric pseudoflow algorithm for k

parameter values is O(mn logn+ kn).

Corollary 4.4.3 For O(m log n) parameter values, the overall worst-case complexity for

the lowest and highest label algorithms using dynamic trees is O(mn logn)—i.e., the same

complexity as a single run.

Note that this is better than the push-relabel algorithm which has the same complexity

as a single run only for k = O(n).

The improved complexity of the parametric pseudoflow algorithm compared to the

parametric push-relabel algorithm is a result of branch structure maintained by the pseud-

oflow algorithm. In both the parametric push-relabel and parametric pseudoflow algo-

rithms, adjusting the flows and capacities costs O(n) time and creates O(n) nodes with

increased excess. With the push-relabel algorithm, the excess at the nodes results in ad-

ditional non-saturating pushes or dynamic tree operations beyond those represented in

the complexity of a single run. With the pseudoflow algorithm, this excess is moved to

the roots of the branches in the renormalization procedure, which costs the same as the

flow and capacity adjustment procedure, O(n). After renormalization, the total number

of merger operations does not increase—i.e., it is still bounded by O(mn) regardless of

the number of parameter values.

4.4.1 Solving for Maximum Flow versus Minimum Cut

In contrast to the parametric push-relabel algorithm that can provide the maximum fea-

sible flow during each iteration (by using the single phase push-relabel algorithm), the

parametric pseudoflow algorithm only computes a maximum pseudoflow at each iteration.

From this pseudoflow, a minimum cut or the minimal source set of a minimum cut can

be easily computed. However, in order to compute a maximum flow for each parameter

value, the flow recovery procedure (Phase II) would have to be performed after computing

the minimum cut, and this flow recovery procedure would need to be applied to a copy

of the problem instance in order to leave the original instance intact to solve for the next

parameter value. Recovering the flow would require O(m logn) time per parameter value.
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For O(n) parameter values, the overall complexity would be unchanged, however the prac-

tical performance would certainly be slower compared to not recovering the feasible flow

for each parameter value.

4.5 Implementations

For our experiments, we look only at solving the simple parametric problem where we are

given a parametric graph Gλ and a sequence of parameter values λ1, . . . , λk and wish to

find a minimum cut4 for each value of the parameter. This section describes the software

we developed for the experiments.

4.5.1 Solvers

Because there are no known implementations of the parametric push-relabel algorithm

[Gol00], we could not test with an existing implementation and were required to write

one. We developed a solver to perform simple parametric sensitivity analysis using the

highest label implementation of Goldberg and Cherkassky [GC97] as the underlying push-

relabel solver subroutine. The parametric pseudoflow solver was similarly implemented

with the option of using either the highest label or lowest label pseudoflow solver as a

subroutine.

In order to measure the benefits of the parametric algorithms performing simple param-

eteric analysis, we need to compare the performance of these algorithms to the performance

of solving the problems without the benefit of the parametric algorithms. To do this, we

take a parametric graph Gλ and convert it to a nonparametric graph by substituting one

value of the parameter λ into the capacity functions cuv(λ) to compute an exact capacity

value for each arc (u, v). This nonparametric graph can then be solved using either the

push-relabel or pseudoflow solvers. This process is repeated for each value of λ.

To automate this process of converting graphs and solving them, we developed what

we call an iterative solver that takes a parametric maximum flow instance Gλ and a series

of parameter values λ1, . . . , λk and solves for a minimum cut in Gλi
repeatedly for each

parameter value, using either the push-relabel or pseudoflow solver as a subroutine. Each

4We could solve for the maximum flow, but our applications are only concerned with minimum cut.
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iteration initializes the solver from scratch, without any information about the flows or

labels from the previous solution.

So, for each parametric graph and sequence of parameter values, we can test six possi-

bilities: we can apply the parametric or iterative techniques to the push-relabel algorithm,

the highest label pseudoflow algorithm, or the lowest label pseudoflow algorithm.

4.5.2 Workbench

We adapted the workbench software described in Section 3.2.3 to invoke the new para-

metric solvers and the iterative solver.

4.6 Testing Methodology

4.6.1 Testing Procedure

For each graph instance, we compared the performance of the parametric solvers to the

iterative solvers. For both the parametric and iterative solvers, we report the sum of the

times to establish the k minimum cuts for k parameter values. As before, we exclude the

time to read the instances, and we report user CPU time as reported by the POSIX times

system call [Pos88].

All testing was performed on the same Sun Microsystems computer described in Sec-

tion 3.3.

4.6.2 Data Files

For testing we selected two application-based instance classes and one modified synthetic

problem class. The applications we selected are discussed in general in Section 4.2. In

this section we discuss the specific parameter values we tested with.

4.6.2.1 Mining

The data files we used were the same synthetic mining data we used for the nonparametric

testing (see Section 3.4.2.5). These were converted to the parametric format such that

λ = 100 coincides with the original data. We tested with nine values of λ: 50, 75, 90, 100,

120, 140, 160, 180, and 200. For a mining operation, this would represent scenarios where
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the price of ore ranged from one half the current value (λ = 50) to twice the current value

(λ = 200).5

4.6.2.2 Image Segmentation

We used two data files based on two digital images. Both images were reduced to 16

shades of grayscale before being converted into parametric graph instances. The first

instance was derived from an image of 128 by 128 pixels. The resulting file had 16,384

nodes and 81,409 arcs. The second instance was based on an image of 229 by 210 pixels.

The resulting file had 48,092 nodes and 239,573 arcs.

For both instances, we chose the quadratic function pj(λ) = (gj − λ)2 for the penalty

function related to the deviation of a pixel j from its original value, gj . So for each pixel

node j, csj(λ) = 2max(λ − gj , 0) and cjt(λ) = 2max(gj − λ, 0). For the arcs between

nodes that represent a penalty for discontinuities in terms of separation of color between

adjacent pixels, we used the constant capacity c = 4.

Although image segmentation is an application of complete parametric analysis, we

solved the problems with our simple sensitivity parametric solvers by iterating over the

range of possible pixel values (excluding the minimum and maximum pixel values). Specif-

ically, the parameter λ took the integer values from 1 to 14.

4.6.2.3 RLG Extra Wide

In many synthetically generated data files the out-degree of the source and the in-degree

of the sink are limited. So, the number of parametric arcs would be limited if the network

were converted to a parametric network. In order to create an interesting problem class,

we used an idea from Badics and Boros [BB93] to create an “extra wide” version of the

random level graph (RLG)—see Section 3.4.2.2. These are grid graphs where the nodes

are arranged in rows and columns. The source is connected to every node in the first

column, and the sink is connected to every node in the last column. We fixed the number

of columns at four, and for a graph with 2x nodes, there are 2(x−2) rows.

We converted these graphs to parametric graphs by changing the original capacity

5The cost to extract the blocks and the amount of ore in each block are held constant—i.e., they are
not parameterized.
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values c(u, v) of the source and sink arcs to linear parametric functions, cuv(λ) = max(a+

bλ, 0), where a and b are specific to each parametric arc. For each source or sink arc

(u, v), we choose a random number r uniformly from [0.2, 0.8]. For source arcs (s, v), we

set a = r · c(s, v) and b = (c(s, v)−a)/100. For sink arcs (v, t), a = −r · c(v, t), and b is the

same as a source arc, b = (c(v, t) − a)/100. By construction, for λ = 100, the graph has

the same capacities as the original, nonparametric graph. We tested with seven values of

λ: 50, 75, 100, 125, 150, 175, and 200.

4.7 Results

For each problem type, we compare the performance of the following solvers.

iter-pr-hl: the iterative, highest label push-relabel solver.

param-pr-hl: the parametric, highest label push-relabel solver.

iter-pfs-lo: the iterative, lowest label pseudoflow solver.

param-pfs-lo: the parametric, lowest label pseudoflow solver.

iter-pfs-hi: the iterative, highest label pseudoflow solver.

param-pfs-lo: the parametric, highest label pseudoflow solver.

For the pseudoflow algorithm, we selected the best heuristic combination for the non-

parametric solver identified in Chapter 3 and used that combination with the parametric

pseudoflow solver. We tested both the highest and lowest label algorithms with this

heuristic combination.

4.7.1 Mining

We tested with three instances of the mining data, mine-54k, mine-108k, and mine-216k,

with 54,000, 108,000, and 216,000 nodes, and 410,000, 826,000, and 1,662,000 arcs respec-

tively. The heuristic combination for the pseudoflow solvers used simple initialization,

constant initial node labels, pre-order searches, wave branch management, and no global

relabeling (simple-const-highest/lowest-pre-wave-0).
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Table 4.2 shows the execution times (in seconds) to establish a minimum cut for the

solvers running with mining data. For each iterative/parametric pair, the best time is

shown in bold font followed by the ratio of the iterative time to the parametric time (i.e.,

a higher ratio indicates better performance for the parametric solver).

mine-54k mine-108k mine-216k

iter-hl 12.73 30.50 77.70

param-hl 3.97 9.44 22.97

ratio 3.21 3.23 3.38

iter-pfs-lo 10.70 25.53 56.62

param-pfs-lo 2.97 7.19 16.65

ratio 3.60 3.55 3.40

iter-pfs-hi 8.30 18.98 41.14

param-pfs-hi 2.17 4.98 10.98

ratio 3.82 3.81 3.75

Table 4.2: Running times for parametric and iterative solvers for mining data with λ ∈
{50, 70, 90, 100, 120, 140, 160, 180, 200}.

From this we can see that the parametric solvers all run three to four times faster than

the iterative solvers for all data instances. The parametric highest label pseudoflow solver

is the fastest overall, and the lowest label pseudoflow solver is faster than the parametric

push-relabel solver.

Table 4.3 shows the details of solving times, number of pushes, and number of mergers

(for the pseudoflow algorithm) for each value of λ for the largest file, mine-216k. For the

parametric solvers, these values represent the additional number of operations that were

performed for the value of λ. For the iterative solvers, these values represent the number

of operations to solve the instance from scratch. The last column contains the total count

of all operations across the values of λ.



108
λ Value

Solver 50 70 90 100 120 140 160 180 200 Total

Cut Time

iter-hl 1.05 1.48 6.60 16.20 15.24 12.60 10.53 7.82 6.18 77.70

param-hl 1.62 1.82 5.57 7.47 2.27 1.15 1.05 1.00 1.02 22.97

ratio 0.65 0.81 1.18 2.17 6.71 10.96 10.03 7.82 6.06 3.38

iter-pfs-lo 0.60 1.14 5.99 10.92 7.40 7.44 7.73 8.09 7.31 56.62

param-pfs-lo 0.60 0.97 5.06 6.19 1.57 0.67 0.55 0.46 0.52 16.59

ratio 1.00 1.18 1.18 1.76 4.71 11.10 14.05 17.59 14.06 3.41

iter-pfs-hi 0.64 1.25 3.84 6.49 6.22 6.02 6.04 5.18 5.46 41.14

param-pfs-hi 0.62 0.84 2.92 3.44 1.30 0.54 0.41 0.38 0.46 10.91

ratio 1.03 1.49 1.32 1.89 4.78 11.15 14.73 13.63 11.87 3.77

Number of Pushes

iter-hl 103,910 432,378 2,231,036 5,726,267 5,891,398 5,007,518 4,416,187 3,403,341 2,703,797 29,915,832

param-hl 104,331 360,232 1,519,147 2,532,668 726,090 229,631 154,854 130,215 178,835 5,936,003

ratio 1.00 1.20 1.47 2.26 8.11 21.81 28.52 26.14 15.12 5.04

iter-pfs-lo 62,388 269,512 2,362,383 3,267,192 879,779 576,798 451,447 352,384 480,847 8,702,730

param-pfs-lo 62,388 411,316 2,259,816 1,667,805 277,695 145,243 119,573 106,541 93,449 5,143,826

ratio 1.00 0.66 1.05 1.96 3.17 3.97 3.78 3.31 5.15 1.69

iter-pfs-hi 55,268 224,220 1,047,909 1,747,241 1,492,912 1,525,106 1,443,368 1,150,545 1,225,700 9,912,269

param-pfs-hi 55,268 326,574 1,137,366 1,218,478 386,177 141,139 111,140 98,495 112,170 3,586,807

ratio 1.00 0.69 0.92 1.43 3.87 10.81 12.99 11.68 10.93 2.76

Number of Mergers

iter-pfs-lo 42,512 89,946 182,602 207,605 158,138 141,890 133,160 107,047 141,722 1,204,622

param-pfs-lo 42,512 49,818 97,292 40,642 10,684 8,592 6,623 5,377 4,382 265,922

ratio 1.00 1.81 1.88 5.11 14.80 16.51 20.11 19.91 32.34 4.53

iter-pfs-hi 44,330 101,900 230,107 297,976 315,845 327,575 339,364 286,511 308,365 2,251,973

param-pfs-hi 44,330 57,722 127,594 79,915 30,314 10,686 8,480 6,846 6,719 372,606

ratio 1.00 1.77 1.80 3.73 10.42 30.65 40.02 41.85 45.89 6.04

Table 4.3: Cut time, number of push operations and merger operations for parametric and iterative, push-relabel and pseudoflow
solvers for mining data file mine-216k.
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As expected, the operation counts for the subsequent values of λ when using any

of the parametric solvers are generally substantially less than solving the problem from

scratch. The parametric push-relabel algorithm performs only 1% more push operations

(5.94 million versus 5.89 million) and takes only 42% longer (22.97 sec versus 16.20 sec)

to solve the entire sequence compared to the most difficult single instances (λ = 100, 120).

Likewise, the lowest label parametric pseudoflow solver performs only 57% more pushes

(5.14 million versus 3.28 million) and takes only 52% longer (16.59 sec versus 10.92) than

solving the most difficult single instance (λ = 100), and the highest label parametric

pseudoflow solver takes 105% more pushes (3.57 million versus 1.75 million) and only 68%

more time (10.91 sec versus 6.49) to solve the entire sequence.

So, all of the solvers can solve the entire sequence of nine parameter values with less

than twice the effort required to solve the single worst instance in the sequence.

One anomaly in the results is that the parametric push-relabel solver is considerably

slower than the iterative push-relabel solver for the first parameter value (λ = 50), even

though the work (solving one instance) should be identical. This is a result of an im-

plementation decision (described below) to alter the way in which the mining problem is

modeled for the parametric push-relabel solver. This change sacrifices performance of the

parametric push-relabel solver when operating with a single parameter value to achieve

greater performance when processing subsequent parameter values.

For the parametric minimum cut problem with mining data, the parameter λ represents

the value of one unit ore. Blocks have either positive or negative net economic value

depending on the amount of ore in the block and the unit price of the ore. Positive blocks

are modeled with a parametric arc (s, v), and negative blocks are modeled as a parametric

arc (v, t). As λ increases, the values of the blocks increase, and negative blocks may

become positive. In this event, the arc (v, t) must be replaced with (s, v).

Our parametric push-relabel solver is based on the code of Goldberg and Cherkassky

[GC97]. However, the data structures used by that code did not lend themselves to

efficiently converting an arc from a sink arc (v, t) into a source arc (s, v). In fact, early

profiling revealed that this was causing a significant performance problem.6

6Since the parametric pseudoflow solver is based on a completely different implementation, there was
no problem with the parametric pseudoflow solver.
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Therefore, we opted to model each block with two arcs, (s, v) and (v, t); however, only

one of the two arcs ever has positive capacity. This increases the number of arcs in the

graph from m to m + n. These added arcs make updating the graph for a new value

of λ much more efficient, although processing these additional arcs (even though they

have zero capacity) does result in a performance penalty. This penalty is clearly evident

when solving for a single parameter (e.g., Table 4.3). However, given even a modest

number of parameter values, the improved efficiency of the parametric push-relabel solver

far outweighs the added overhead of the additional arcs.

4.7.2 Image Segmentation

We tested with two image data files, one had 16,384 nodes, and the other had 48,092

nodes. Both images had 4 bits per pixel or 16 possible grayscale values. We tested with

14 parameter values from 1 to 14. The heuristic combination for the pseudoflow solvers

used simple initialization, constant initial node labels, pre-order searches, LIFO branch

management, and no global relabeling (simple-const-highest/lowest-pre-lifo-0).

Table 4.4 shows the execution times (in seconds) for the solvers running with image

data. For each iterative/parametric pair, the best time is shown in bold font followed by

the ratio of the iterative time to the parametric time (i.e., a higher ratio indicates better

performance for the parametric solver).

image1 image2
num pixels 16,384 48,090

iter-hl 1.55 6.49

param-hl 0.57 2.98

ratio 2.72 2.18

iter-pfs-lo 2.55 7.27

param-pfs-lo 0.61 2.04

ratio 4.18 3.56

iter-pfs-hi 2.19 9.61

param-pfs-hi 0.92 5.19

ratio 2.38 1.85

Table 4.4: Running times for parametric and iterative solvers for image data with 14
parameter values: λ ∈ {1 . . . 14}.

We can see that again the parametric solvers run considerably faster than the iterative
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solvers. The lowest label parametric pseudoflow solver achieves the highest speed-up ratios

and is the fastest solver for the larger instance, image2. The parametric push-relabel is

the fastest for the smaller instance, image1.

Table 4.5 shows the details of solving times, number of pushes, and number of mergers

(for the pseudoflow algorithm) for each value of λ for the smaller file, image1.

Again, as expected, the operation counts for subsequent values of λ when using any

of the parametric solvers are are generally substantially less than solving the problems

from scratch. For this instance, the parametric solvers perform between 165% (115,563

versus 43,541 for lowest label pseudoflow) and 270% (276,472 versus 75,349 for highest

label pseudoflow) more push operations and take from 80% (0.56 sec versus 0.31 sec for

lowest label pseudoflow) to 207% (0.86 sec versus 0.28 sec for highest label pseudoflow)

more time to solve the entire sequence than solving the most difficult single instance. So,

all of the solvers were able to solve a sequence of 14 problems with less than three times

the work needed to solve the single worst instance.
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λ Value
Solver 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total

Cut Time

iter-hl 0.01 0.02 0.03 0.06 0.14 0.12 0.11 0.11 0.13 0.15 0.15 0.16 0.16 0.20 1.55

param-hl 0.05 0.04 0.06 0.06 0.08 0.06 0.04 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.57

ratio 0.20 0.50 0.50 1.00 1.75 2.00 2.75 3.67 4.33 7.50 5.00 8.00 5.33 10.00 2.72

iter-pfs-lo 0.02 0.03 0.08 0.14 0.22 0.27 0.31 0.28 0.23 0.21 0.22 0.21 0.22 0.11 2.55

param-pfs-lo 0.02 0.00 0.06 0.10 0.15 0.09 0.04 0.02 0.04 0.01 0.01 0.01 0.01 0.00 0.56

ratio 1.00 1.33 1.40 1.47 3.00 7.75 14.00 5.75 21.00 22.00 21.00 22.00 4.55

iter-pfs-hi 0.02 0.03 0.07 0.14 0.21 0.28 0.21 0.19 0.22 0.20 0.16 0.16 0.15 0.15 2.19

param-pfs-hi 0.02 0.02 0.06 0.10 0.26 0.17 0.09 0.04 0.05 0.01 0.01 0.01 0.01 0.01 0.86

ratio 1.00 1.50 1.17 1.40 0.81 1.65 2.33 4.75 4.40 20.00 16.00 16.00 15.00 15.00 2.55

Number of Pushes

iter-hl 337 4,920 19,156 31,884 63,397 62,685 53,175 60,954 50,634 48,466 48,380 49,127 48,839 49,858 591,812

param-hl 217 3,131 20,284 28,005 49,048 36,109 12,688 7,363 9,413 1,024 1,059 1,114 1,523 1,523 172,501

ratio 1.55 1.57 0.94 1.14 1.29 1.74 4.19 8.28 5.38 47.33 45.68 44.10 32.07 32.74 3.43

iter-pfs-lo 257 3,789 19,326 26,952 43,541 35,177 20,004 13,382 9,289 3,743 3,119 2,706 2,859 1,098 185,242

param-pfs-lo 257 3,169 15,698 19,499 35,935 19,467 7,002 5,400 5,361 805 804 882 1,043 241 115,563

ratio 1.00 1.20 1.23 1.38 1.21 1.81 2.86 2.48 1.73 4.65 3.88 3.07 2.74 4.56 1.60

iter-pfs-hi 254 3,685 19,754 39,517 68,203 75,349 44,174 39,550 39,406 34,469 33,211 33,576 34,257 33,755 499,160

param-pfs-hi 254 3,972 22,111 35,899 96,655 60,779 23,920 9,880 14,790 2,489 1,312 1,002 1,886 1,523 276,472

ratio 1.00 0.93 0.89 1.10 0.71 1.24 1.85 4.00 2.66 13.85 25.31 33.51 18.16 22.16 1.81

Number of Mergers

iter-pfs-lo 220 2,372 11,353 16,078 24,954 20,372 12,052 8,245 5,699 2,509 2,087 1,772 1,789 724 110,226

param-pfs-lo 220 2,007 9,102 11,352 20,789 10,814 3,915 3,235 3,015 470 481 523 594 88 66,605

ratio 1.00 1.18 1.25 1.42 1.20 1.88 3.08 2.55 1.89 5.34 4.34 3.39 3.01 8.23 1.65

iter-pfs-hi 244 2,760 13,883 28,966 51,743 59,576 39,043 36,024 36,437 33,447 32,595 32,947 33,484 33,258 434,407

param-pfs-hi 244 2,846 14,511 23,718 64,168 42,694 16,822 6,917 10,433 1,815 887 713 1,279 1,060 188,107

ratio 1.00 0.97 0.96 1.22 0.81 1.40 2.32 5.21 3.49 18.43 36.75 46.21 26.18 31.38 2.31

Table 4.5: Cut time, number of push operations and merger operations for parametric and iterative, push-relabel and pseudoflow
solvers for image data file image1.
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4.7.3 RLG Extra Wide

We tested with three files from the RLG extra wide class. The files, rlg.16, rlg.17, and

rlg.18, had approximately 216, 217, and 218 nodes, respectively. We tested with seven

values of λ: 50, 75, 100, 125, 150, 175, and 200. The pseudoflow solvers used simple

initialization with constant initial labels, wave branch management, pre-order searching,

and no global relabeling (simple-const-highest/lowest-wave-pre-0).

Table 4.6 shows the execution times (in seconds) for the solvers running with RLG

extra wide data. For each iterative/parametric pair, the best time is shown in bold font

followed by the ratio of the iterative time to the parametric time (i.e., a higher ratio

indicates better performance for the parametric solver).

rlg.16 rlg.17 rlg.18
nodes 65,538 131,074 262,146
arcs 180,224 360,448 720,896

iter-hl 1.39 4.85 11.25

param-hl 0.64 1.89 4.31

ratio 2.17 2.57 2.61

iter-pfs-lo 6.58 19.76 41.78

param-pfs-lo 1.53 3.90 8.27

ratio 4.30 5.07 5.05

iter-pfs-hi 3.40 10.47 21.71

param-pfs-hi 0.85 2.00 4.30

ratio 4.00 5.24 5.05

Table 4.6: Running times for parametric and iterative solvers for RLG extra wide data
with λ ∈ {50, 75, 100, 125, 150, 175, 200}.

As was the case previously, the parametric solvers run faster than the iterative solvers.

The parametric pseudoflow solvers consistently achieve a higher speedup-ratio than the

parametric push-relabel solver. However, in all cases, the parametric push-relabel solver

is faster in absolute terms compared to the parametric pseudoflow solvers.

Table 4.7 shows the details of solving times, number of pushes, and number of mergers

(for the pseudoflow algorithm) for each value of λ for the rlg.17 file.
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λ Value

Solver 50 75 100 125 150 175 200 Total

Cut Times

iter-hl 0.87 0.80 0.76 0.71 0.62 0.56 0.53 4.85

param-hl 1.01 0.18 0.16 0.14 0.14 0.13 0.12 1.88

ratio 0.86 4.44 4.75 5.07 4.43 4.31 4.42 2.58

iter-pfs-lo 3.30 2.93 3.00 2.94 2.52 2.52 2.55 19.76

param-pfs-lo 3.27 0.23 0.09 0.08 0.07 0.06 0.05 3.68

ratio 1.01 12.74 33.33 36.75 36.00 42.00 51.00 5.37

iter-pfs-hi 1.57 1.54 1.49 1.50 1.48 1.47 1.42 10.47

param-pfs-hi 1.56 0.09 0.07 0.06 0.05 0.05 0.05 1.76

ratio 1.01 17.11 21.29 25.00 29.60 29.40 28.40 5.95

Number of Pushes

iter-hl 520,559 433,319 377,433 333,817 304,131 277,067 253,915 2,500,241

param-hl 520,559 16,834 8,960 3,231 2,097 1,172 321 553,174

ratio 1.00 25.74 42.12 103.32 145.03 236.41 791.01 4.52

iter-pfs-lo 347,562 266,878 212,822 176,490 150,318 131,348 118,001 1,403,419

param-pfs-lo 347,562 4,673 2,249 1,088 606 341 178 356,697

ratio 1.00 57.11 94.63 162.22 248.05 385.18 662.93 3.93

iter-pfs-hi 322,600 292,025 273,855 260,575 251,481 244,117 237,880 1,882,533

param-pfs-hi 322,600 5,194 2,404 1,127 670 374 194 332,563

ratio 1.00 56.22 113.92 231.21 375.34 652.72 1226.19 5.66

Number of Mergers

iter-pfs-lo 181,978 153,622 133,278 118,297 106,941 98,242 91,669 884,027

param-pfs-lo 181,978 949 437 200 125 59 34 183,782

ratio 1.00 161.88 304.98 591.49 855.53 1665.12 2696.15 4.81

iter-pfs-hi 274,498 256,810 244,917 235,705 228,565 222,929 217,990 1,681,414

param-pfs-hi 274,498 1,170 505 235 153 70 38 276,669

ratio 1.00 219.50 484.98 1003.00 1493.89 3184.70 5736.58 6.08

Table 4.7: Cut times, number of pushes and mergers for parametric and iterative pseudoflow solvers for RLG extra wide data file
rlg.17.
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As expected, the operation counts for subsequent values of λ when using any of the

parametric solvers are are generally substantially less than solving the problems from

scratch. For all of the parametric solvers, the number of pushes to solve the entire se-

quence is less than 5% more than is required to solve the most difficult single instance.

The parametric pseudoflow lowest label solver takes only 12% more time (3.68 sec versus

3.30 sec) to solve the whole sequence than the hardest single instance, the parametric

pseudoflow highest label solver also takes 12% more time (1.76 sec versus 1.57 sec), and

the parametric push-relabel solver takes approximately twice as long (1.88 sec versus 0.87

sec) as the single hardest instance.

4.8 Conclusions

In this chapter, we describe a specific type of parametric maximum flow/minimum cut

problem and provide some sample applications from the literature. We describe how

these problems can be solved efficiently using either the push-relabel or the pseudoflow

algorithms. Both of these algorithms can perform simple parametric analysis on at least

O(n) parameter values with the same complexity as a single run of the corresponding

nonparametric maximum flow algorithm.

Our experimental results show that these algorithms are also efficient in practice. We

find that the parametric implementations do, in fact, run faster than solving the prob-

lems iteratively. In some cases, we can solve a sequence of approximately 10 parametric

problems with less than 20% more effort than is required to solve the single most difficult

instance. Thus, these parametric algorithms could be very useful in practice.

Compared against each other, the results of the parametric versions of the push-relabel

and pseudoflow algorithms are mixed, with neither being consistently better than the

other.



Chapter 5

Warm Start

In this chapter, we discuss a warm start technique for the pseudoflow algorithm. Like the

parametric algorithm of the previous chapter, warm start allows us to use the results of

one solution to create an initial normalized forest to solve a subsequent problem. Unlike

the parametric networks in Chapter 4, the warm start algorithm allows the capacities of

any arc to be changed, not just the source and sink arcs.

5.1 Introduction

Given an initial, underlying network G = (V,A), we can define a sequence of networks, G1,

G2, . . . , Gk, where the nodes and arcs of each network are the same, but each network

Gi has a different set of capacities on the arcs, ci. The capacities may differ in any

arbitrary way, but the capacities must still be non-negative. Our objective is to compute

the minimum cut for each network. These instances may be generated dynamically—i.e.,

the entire sequence need not be known when we begin the algorithm.

This technique was originally motivated by the scheduling algorithm of Möhring et al.

[MSSU03] that we described briefly in Section 3.4.2.7. The authors solve the scheduling

problems by solving a series of minimum cut instances. These instances have no parametric

functions relating the capacities in one instance to those in another. The authors solve

each instance independently using the push-relabel algorithm.

116
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5.2 Warm-Start Pseudoflow Algorithm

The warm start algorithm uses the results from solving one instance as initial data for

solving the next instance. If the solution to the next instance is expected to be similar to

the solution for the previous instance, it seems likely that the previous solution would be

a good initial starting point for solving the next instance.

After completing Phase I for an instance Gi and computing pseudoflow values fi, we

read in the new capacities ci+1 for instance Gi+1 and adjust the flows to create an initial

pseudoflow fi+1 to begin solving Gi+1.

There are a large number of heuristics that can be used when adjusting the flows on

the arcs. The only requirement is that we meet the requirements of the normalized forest

structure described in Section 2.1.2. We present a simple heuristic below and will discuss

other heuristics later.

Obviously, if the new capacity of an arc is less than the previous flow on the arc,

ci+1(u, v) < fi(u, v), we need to reduce the flow to produce a feasible pseudoflow. We set

the flow to match the new capacity—i.e., fi+1(u, v) = ci+1(u, v).

If the capacity of an arc increases, the existing flow on the arc would be feasible and

does not necessarily require adjusting. However, the normalized forest structure requires

that all out-of-tree arcs are at either their upper capacity bound or zero. Therefore, if

the arc was saturated before, fi(u, v) = ci(u, v), then we choose to keep it saturated by

setting the new flow to match the new capacity, fi+1(u, v) = ci+1(u, v).

procedure adjustFlows(A, fi, fi+1, ci, ci+1):
foreach arc (u, v) ∈ A:
if ci+1(u, v) < fi(u, v):
fi+1(u, v) ← ci+1(u, v)

else if ci(u, v) = fi(u, v):
fi+1(u, v) ← ci+1(u, v)

else:
fi+1(u, v) ← fi(u, v)

Clearly, if we adjust the flow on an arc, we will generate excess on one end and deficit

on the other. This may violate the normalized forest property that requires non-root nodes

have zero excess. Therefore, we renormalize the branches in a way that is similar to that
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used for the parametric pseudoflow algorithm in Section 4.4. One difference is that the

parametric algorithm only deals with excess at non-root nodes adjacent to the source or

sink, whereas the warm start algorithm must deal with excess or deficit anywhere in the

graph—i.e., the renormalization procedure for the warm start algorithm is more general

than the renomalization proceure for the parametric algorithm.

We use a post-order traversal [CLR90] to process the nodes within a branch from the

leaves up to the root. If a node has positive excess, we attempt to push the excess up to

the node’s parent. If the node has deficit, we attempt to pull excess down from the parent.

If the edge between the node and its parent does not have sufficient residual capacity to

move the entire amount of excess, the node is split from its parent, and the node becomes

the root of a new branch.

procedure renormalize(VI , f, c, par):
foreach branch root v ∈ VI :

renormalizeSubTree(v, f, par)

procedure renormalizeSubTree(v, f, c, par):
foreach child u of v:
renormalizeSubTree(u, f, c, par)

if ef (v) 6= 0:
p ← par(v)
if ef (v) > 0:
δ ← min(ef (v), rf (v, p))

else:
δ ← max(ef (v),−rf (p, v)) 〈〈δ is negative〉〉

f(v, p) ← f(v, p)+δ
if ef (v) 6= 0:
〈〈split v from p〉〉
par(v) ← nil
if ef (v) > 0:
mark v strong

else:
mark v weak

Hochbaum [Hoc97] showed that this renormalization procedure runs in time O(n)

because each in-tree arc is traversed and updated O(1) times.

For the highest and lowest label algorithms, we may also need to adjust the labels of

the nodes. As a result of adjusting the capacities and flows as well as the renormalization
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procedure, the node labels may no longer represent lower bounds on the distance from the

nodes to the sink in the residual graph , thus violating Property 3 for the node labels (see

Section 2.3).

There are numerous possible policies for adjusting the labels. We choose to relabel the

nodes using the constant labeling scheme defined in Section 2.3: weak nodes are assigned

label one and strong nodes are assigned label two. An obvious alternative would be a

distance-to-deficit labeling described in Section 2.6.3. We found this policy performed so

poorly during our initial testing that we did not thoroughly test it, and it is not used in

our experiments reported later in the chapter.

The pseudocode for the entire warm start algorithm is shown below.

procedure warmStartPseudoflow(V,A, s, t, c1, . . . , ck):
read first instance capacities c1
call pseudoflowPhase1(V,A, s, t, c1, f1)
for i = 2 to k:
read capacities ci
call adjustFlows(A, fi−1, fi, ci−1, ci)
call renormalize(VI , fi, ci)
〈〈adjust the labels〉〉
foreach v ∈ VI :

if v is strong:
l(v) ← 2

else:
l(v) ← 1

call pseudoflowPhase1(V,A, s, t, ci, fi)

The complexity results for both the standard pseudoflow algorithm and the parametric

pseudoflow solver rely on the maximum value of the node labels being less than n and

the property that the labels never decrease. These two conditions allow the number of

mergers to be bounded.

Because the capacities of any or all arcs in the graph may change when moving from

one warm start instance to the next, a node may become much closer to the the sink in

the new residual graph. Property 3 for the node labels requires that the label of a node

be a lower bound on the distance from the node to the sink in the residual graph. So, in

order to preserve Property 3, the label of the node must be reduced.
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Thus, we cannot bound the number of meregers, which means we cannot provide any

complexity bounds beyond that of repeatedly solving each instance independently. In the

absence of any special structure that the algorithm could exploit, this is what we would

expect: to solve k instances, the complexity is k times that of a single run.

5.2.1 Heuristics for Adjusting Flows

In the previous section, we presented a simple policy for adjusting the flows on arcs in

response to new capacities. For saturated, out-of-tree arcs, when the capacity of the arc

increases, the policy always keeps the arc saturated. However, other policies are possible

for dealing with saturated, out-of-tree arcs that increase capacity, so long as the result is

a normalized forest. In particular, out-of-tree arcs must be either saturated or have zero

flow in accordance with property 2 of normalized forests (see Section 2.1.2). Note that for

our experiments later in the chapter, we only use the simple policy.

We call one such policy “rounding.” Let δ be the amount by which the capacity of

arc (u, v) increases: δ = ci+1(u, v) − ci(u, v). The simplest rounding rule keeps the arc

saturated if the change in capacity is less than the previous capacity (if δ < ci(u, v) then

fi+1(u, v) = ci+1(u, v)). Otherwise, we reduce the flow on (u, v) to zero (fi+1(u, v) = 0).

The idea is to “round” the flow up or down, depending on which requires a bigger change

in the flow.

We can further enhance this policy by introducing a parameter α > 0 such that if

αδ < ci(u, v), then we round the flow up, fi+1(u, v) = ci+1(u, v). Otherwise, we reduce

the flow on (u, v) to zero. If α = 1, this is the same as the simple rounding rule above.

Otherwise, if α < 1, then more arcs will be kept saturated (rounded up), and if α > 1,

then more arcs will be reduced to zero (rounded down).

Both of these procedures ensures that out-of-tree arcs are either saturated or have zero

flow. Regardless of the procedure used to adjust the flows on arcs, the same renormaliza-

tion procedure (renormalize) can be used to renormalize the branches after the adjustment

to produce a valid normalized forest.
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5.3 Software

We extended the pseudoflow solver by adding functions to read a new set of capacities,

adjust the flows, and renormalize the branches. The code to adjust the flows is based

on the simple adjustFlows procedure in the previous section, which does not perform

rounding. We wrote a new driver program that calls these functions for each problem

instance and collects the time to establish a cut—i.e., solve the instance.

We modified the workbench to call the new warm start driver program. We also created

a new iterative solver that is similar, but simpler than the one we used in Chapter 4. The

iterative solver uses a a simple, non-warm-start maximum flow solver (either pseudoflow

or push-relabel from Chapter 3) to solve a sequence of minimum cut problems. This

is simpler than the iterative solver from Chapter 4 in that this solver does not need to

substitute parameter values into a parametric graph to create non-parametric instances.

Rather, we are given a sequence of non-parametric instance to solve, and we solve them

in the order given.

5.4 Hardware

The experiments in this section were performed on a different Sun Microsystems computer

than that described in Section 3.3 (and also used in Chapter 4). The performance results

presented here were conducted on a Sun E250 system. The system had one Sparc V9 CPU

running at 400 MHz with 640 MB of RAM.

We again performed the machine calibration experiment, as suggested by the DIMACS

Challenge Core Experiments [Dim90]. Table 5.1 shows the running times (in seconds) for

the two tests with and without compiler optimizations.

Optimization Test 1 Test 2
Level real user system real user system

no optimization 0.2 0.2 0.0 1.9 1.9 0.0
-O flag 0.1 0.1 0.0 1.2 1.2 0.0

Table 5.1: Average running times for DIMACS machine calibration tests on Sun E250
system.
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5.5 Testing Methodology

5.5.1 Testing Procedure

We wish to evaluate how well the warm start technique works compared to solving the

sequence of problems iteratively. For each problem instance, we compare the running

times of the warm start solver to that of the iterative solver and report the total time to

establish the k minimum cuts, where k is specific to each problem instance.

We average the times over five runs for each solver-instance pair. For the warm start

solver, the time includes establishing the initial normalized forest, solving the k problems,

and renormalizing the graph k − 1 times between solutions. For the iterative solver, the

time is the sum of the times to solve the k instances including establishing the initial

normalized forest and solving the instances. Both solvers exclude the time spent reading

the instances into memory. All times represent user CPU time in seconds as reported by

the POSIX times system call [Pos88].

For both solvers, we use the best heuristic combinations we identified in Chapter 3 for

each problem class. These heuristics are specified with the results for each problem class.

5.5.2 Data Files

Our first set of test instances come from the original scheduling problems of Möhring et

al. [MSSU03] and is described in Section 3.4.2.7. We selected a larger number of instances

than we used in Chapter 3. The problems vary in size and difficulty (from 4,200 to 20,500

nodes - see Table 5.2). Each scheduling instance contains 51 minimum cut problems.

We also developed a problem generator that converts a single network into a sequence

of instances where each instance differs from the previous one in that the arc capacities are

adjusted as described below. This generator was applied to random level graphs (RLG)

as described in Chapter 3.

The generator is controlled by two parameters, a and c, that take values between zero

and one. For each arc in the graph, we flip a biased coin to decide if the arc capacity

will change. That is, we select a random number q from U [0, 1], and if q is less than

or equal to a, we adjust the arc. To adjust the arc capacity, we select a second random

number r from U [−c, c] and set c(u, v) = (1 + r)c(u, v). As we generate a sequence of
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instances, each instance is the input for the next instance—i.e., each instance is expected

to be increasingly different from the original instance.

We also developed a variant of this generator for use with mining graphs. The generator

takes a mining instance and changes the source and sink arcs representing the ore content

of the blocks in the mine to create a new mining instance.

These changes differ from the type of parametric analysis performed in the previous

chapter where we simulate changes in the price of the ore, given a fixed estimate of the

amount of ore in the blocks. For example, if the price of the ore increases, the economic

value of all blocks continaing ore will increase. Changing the values of the blocks arbitrarily

allows one to simulate changes in the amount of ore thought to be in the blocks, and the

changes need not vary according to a monotone function or a single parameter. Hence,

the economic value of a block could increase, decrease, or remain unchanged.

5.6 Results

5.6.1 Scheduling Data

The running times for scheduling problem instances are shown in Table 5.2. The heuristics

used are simple-const-highest-lifo-pre-0. We can see that the warm start technique is

faster (ratio greater than one) in four of the instances (j1, j22, j28, and j38), but slower in

three other instances (j6, j16, and j56). For the remaining two instances (j7 and j27), the

performance for warm start is the same as iterative. In the best case (j22), the performance

is only 1.7 times faster than iterative.

j1 j6 j7 j16 j22 j27 j28 j38 j56

nodes 5,194 11,617 5,770 18,395 4,257 6,143 4,745 4,523 20,565

arcs 11,068 27,487 12,820 44,416 9,966 15,258 10,901 10,185 60,567

warm-pfs 1.398 7.246 2.704 15.698 1.492 4.040 2.214 1.774 21.612

iter-pfs 1.858 6.186 2.660 11.086 2.522 4.048 2.632 2.140 15.630

ratio 1.33 0.85 0.98 0.71 1.69 1.00 1.19 1.21 0.72

Table 5.2: Running times for warm start and iterative solvers for scheduling data. Ratios
greater than one (shown in bold) indicate that the warm start solver performs better than
the iterative solver.

Graph Size
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Notice that warm start performs better than the iterative solver for smaller graphs (be-

tween 4,200 and 5,200 nodes) and worse for larger graphs (over 25,000 nodes). The per-

formance is approximately equal for the graphs containing 5,800 nodes and 6,200 nodes.

Recall from Section 3.4.2.7 that the scheduling minimum cut problem instances are

composed of J paths, one for each job being scheduled, and each path is approximately

T nodes long, one node for each time period. Each instance contains 120 jobs. In other

words, the graphs are all 120 rows wide, but the number of time periods, the length of the

graph or number of columns, varies. So, the warm start algorithm seems to work better

for shorter scheduling graphs. Intuitively, the length of the graph should not hinder the

warm start technique. If longer graphs are problematic, we would expect that they would

also be problematic for the iterative solver.

Number of Arc Changes

Next, we looked at the number of arcs that changed capacity and the magnitude of the

changes between consecutive instances. There are two types of arcs in the scheduling

graphs. The arcs along the paths corresponding to jobs have finite capacities that vary

between instances in a sequence. The arcs between paths that represent dependencies

between the jobs have infinite capacity, and the capacities for these arcs do not change.

Therefore, in the discussions that follow, we are only concerned with the finite capacity

arcs along the paths.

Table 5.3 shows the performance of warm start (as a speedup ratio) and the average

percentage number of the finite arcs that changed capacity between the subsequent in-

stances in the scheduling problems. We can see that for instances in which warm start

performs relatively poorly, nearly all of the arcs (over 95%) change. In the instances where

warm start performs well, fewer arcs change, but the percentage is still fairly large—65%

to 87%.

Instance j1 j6 j7 j16 j22 j27 j28 j38 j56

Ratio 1.33 0.85 0.98 0.71 1.69 1.00 1.19 1.21 0.72

%arcs changed 64.61% 94.79% 95.94% 96.65% 66.54% 93.97% 85.21% 86.88% 96.60%

Table 5.3: Average percentage of finite capacity arcs changing capacity and speedup ratio
for warm start.
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Magnitude of Capacity Changes

The magnitude of the changes of the arc capacities follows the same pattern for all of the

scheduling instances. The initial instances in the sequences show tremendous percentage

change in capacity, but the changes taper off towards the end of the sequence, where the

capacities changed by only 1–3%. This is shown in Figure 5.1 along with the speedup

ratio for each instance in the sequence. The top two instances (j6 and j56) are ones where

warm start does poorly, and the bottom two instances (j22 and j28) are instances where

it does well.
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Figure 5.1: Plots of the magnitude of capacity changes and speedup ratio through the
problem sequences for a subset of the scheduling instances. The capacity changes are
plotted on the left-hand side with the solid line. The speedup is plotted on the right-hand
scale with the dashed line.

In all cases, the arc changes follow the same pattern regardless of whether warm start
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performs better or worse than iterative solver. There seems to be no correlation between

the speedup ratio and the arc capacity changes or the instance number.

Changes in Number of Strong Nodes

In an attempt to quantify how much work the warm start algorithm does when solving,

we looked at the change in the number of strong nodes before solving an instance (after

renormalization) and the number after solving it. This crude estimate looks only at the

number of strong nodes, not the specific nodes. This estimate will not be representative

in cases where the solver performs a lot of work, but finishes with the same number of

strong nodes as it began with.

We plotted the percentage change in the number of strong nodes against the speedup

ratio for all of the scheduling instances in Figure 5.2 below. The plot has a bell-curve

shape, centered to the right of zero.1 It appears that the warm start solver may do

poorly regardless of the change in the number of strong nodes. In those cases where the

warm start solver performs well, the number of strong nodes either decreased slightly

or increased. However, in those same cases, there are many examples where the warm

start solver performed poorly. So, the warm start solver may do well when the change

in the number of strong nodes is modest, but a modest change does not guarantee good

performance.

Renormalization Overhead

Another possible explanation for the poor performance of warm start is that the cost of

renormalizing the branches for the warm start solver exceeds the cost of initializing the

normalized forest from scratch for the iterative solver.

We looked at the cumulative amount of time spent establishing the normalized forest

before solving each instance. For the iterative solver, this is the sum of the initialization

times for each instance. For the warm start solver, it is the first initialization time plus

the sum of all subsequent renormalization times. We call these times the “tree times” for

each algorithm.

Table 5.4 below shows the overall solving time, the tree time, and the time spent

solving (excluding the tree time) for the iterative and warm start solvers for four scheduling

1The data above 1.5 occurs in bands due to timer resolution issues. The resolution of the measurements
is 0.01 seconds, and we are comparing values like 0.01 vs. 0.02 and 0.02 vs. 0.05.
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Figure 5.2: Plot of the speedup ratio as a function of the change in the number of strong
nodes while solving for all of the scheduling instances. The y-axis was truncated at 2.5 to
better show the details of the rest of the data.

problems: two where warm start performs well and two where it does not. We also include

the ratio of the iterative times to the warm start times.

We use the simple initialization scheme for solving scheduling instances. For all of the

instances, renormalization is more expensive than repeated initialization. This is probably

because renormalization makes two passes over the nodes (once to push excess or deficit

to the roots and once to reset the node labels). However, as we can see, the extra tree

time for the warm start solver does not entirely explain the poor performance of the warm

start solvers; the solving times (excluding the tree times) are still slower than the iterative

solver for j16 and j56. So, renormalization results in a normalized forest that is “farther”

from optimal compared with the initial normalized forest. In other words, it requires more

effort to solve starting with a renormalized forest than to solve with an initial normalized

forest.

Operations Counts
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Solver Time j16 j56 j22 j28

Warm Overall 15.88 21.95 1.70 2.06

Tree 2.37 3.04 0.32 0.31

Solve 13.51 18.91 1.38 1.75

Iterative Overall 11.03 15.9 2.61 2.63

Tree 0.64 0.87 0.13 0.09

Solve 10.39 15.03 2.48 2.54

Ratio Overall 0.69 0.72 1.54 1.28

Tree 0.27 0.29 0.41 0.29

Solve 0.77 0.79 1.80 1.45

Table 5.4: Tree times: comparing renormalization in the warm start solver to re-
initialization in the iterative solver.

In Table 5.5 we present data regarding the relative number of operations performed by the

warm start solver compared to the iterative solver. Each entry is the ratio of the number

of operations performed by the iterative solver compared to the warm start solver. Higher

ratios indicate that the warm start solver is performing fewer operations, which should

yield better performance.

j6 j16 j56 j22 j28 j38

times 0.88 0.71 0.70 1.80 1.23 1.27

mergers 1.95 1.71 1.47 3.12 1.90 2.17

pushes 1.20 0.94 0.91 2.71 1.29 1.26

arc scans 1.03 0.82 0.85 2.20 1.49 1.54

node visits 0.95 0.74 0.75 2.09 1.36 1.38

rehangs 0.43 0.19 0.21 1.77 0.90 0.46

relabels 0.99 0.81 0.85 2.00 1.42 1.42

splits 0.55 0.24 0.21 2.13 1.12 0.70

Table 5.5: Operation count ratios for scheduling instances. Each entry represents the ratio
of the number of operations performed by the iterative solver vs. the number performed
by the warm start solver. Values greater than one indicate warm start is performing fewer
operations.

We can see that the warm start solver always performs fewer merger operations. How-

ever, each merger operation is composed of a number of other operations, and for these,

the data follows a pattern: in cases where warm start does well, it performs fewer of these

operations (ratio greater than one), and in the others it performs more.
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A greater number of node visits and arc scans indicates that warm start performs more

work to identify a merger arc. The higher number of pushes and rehangs indicates that

the path between the strong root and the weak root is longer, and that the branches are

bigger. The higher number of rehangs indicates that the warm start solver is identifying

merger arcs deeper in the strong branch. So, despite the fact that warm start always

performs fewer mergers, when the warm start algorithm does poorly, it performs more

work to identify the merger arc and to renormalize the tree after the merger.

Summary

The warm start technique shows mixed results with the scheduling data. It runs faster for

smaller, shorter graphs than the iterative solver. It seems to run faster when fewer arcs

are changed. When it runs slower, the warm start algorithm still performs fewer mergers,

but it does more work to identify and execute the mergers.

5.6.2 Random Level Graphs—RLG

To gain more experimental data and to test some of the hypotheses regarding the perfor-

mance from the previous section, we generated sequences of instances based on random

level graphs (RLG).

Using the generator described in Section 5.5.2, we generated 16 rlg-long instances

with 215 (32,768) nodes. We varied the percentage of arcs changed (a = 20, 80) and the

magnitude of the changes (c = 20, 80). For each combination of a and c, we generated

four instances each with a different random number seed. Each instance is a sequence of

10 problems.

The results of the warm start solver on the rlg-long.15 instances are shown in Table 5.6.

The heuristic combination used was simple-deficit-highest-wave-pre-0.

Overall, the warm start technique performs better on rlg-long than on the scheduling

data. There are a number of cases where the speedup ratio exceeds 2.0 and the highest is

3.33 (a=80, c=80, seed=30). On the other hand, the lowest speed up ratio is 0.4 (a=80,

c=20, seed=30), which is worse than any of the scheduling instances.

Intuitively, we would expect that smaller magnitude changes affecting a smaller number

of arcs (a20c20) would yield the best performance because the source sets of the cuts
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a20c20 a20c80 a80c20 a80c80

seed warm iter ratio warm iter ratio warm iter ratio warm iter ratio

10 7.754 8.828 1.14 11.942 20.292 1.70 8.122 12.256 1.51 12.012 23.576 1.96

20 7.414 8.494 1.15 7.246 5.336 0.74 9.142 10.078 1.10 13.316 29.022 2.18

30 7.198 7.460 1.04 8.330 7.400 0.89 10.636 4.232 0.40 14.856 49.450 3.33

40 7.128 6.442 0.90 11.498 31.842 2.77 8.136 5.316 0.65 15.736 31.912 2.03

total 29.494 31.224 1.06 39.016 64.870 1.66 36.036 31.882 0.88 55.920 133.960 2.40

Table 5.6: Rlg-long warm start performance. The values for a (20, 80) indicate the
percentage of arcs whose capacity was changed, and the values for c (20,80) indicate
the percentage change in capacity. The heuristic combination used was simple-deficit-
highest-wave-pre-0.

between successive instances should tend to change less. At the other extreme, we would

expect that large magnitude changes on a large number of arcs (a80c80) would yield the

worst performance. However, we can see no such pattern.

Graph Length

One theory from the scheduling data is that warm start performs better on shorter graphs,

possibly due to smaller branches. To test this hypothesis, we generated some rlg-xwide

instances similar to those used in Chapter 4. These graphs have the same number of nodes

as the rlg-long graphs above, but only have four columns of nodes between the source and

the sink (vs. 512 columns for rlg-long).

The results of the rlg-xwide data are shown below in Table 5.7. There is little difference

in the effectiveness of the warm start technique between the longer rlg-long graphs and

the shorter rlg-xwide graphs; warm start is still not uniformly better than iterative. The

performance of warm start does seem more robust: the range of speedup ratios for rlg-

xwide graphs is considerably smaller—0.87 to 1.41 vs. 0.4 to 3.33 for rlg-long.

a20c20 a20c80 a80c20 a80c80

seed warm iter ratio warm iter ratio warm iter ratio warm iter ratio

10 2.23 3.14 1.41 3.12 3.24 1.04 2.77 3.37 1.22 3.94 3.52 0.89

20 2.27 3.14 1.39 3.16 3.26 1.03 2.76 3.35 1.21 3.99 3.53 0.88

30 2.23 3.16 1.42 3.11 3.24 1.04 2.71 3.34 1.23 3.99 3.59 0.90

40 2.21 3.15 1.42 3.10 3.22 1.04 2.77 3.35 1.21 4.06 3.55 0.87

total 8.95 12.60 1.41 12.49 12.96 1.04 11.01 13.40 1.22 15.98 14.19 0.89

Table 5.7: Rlg-xwide warm start performance. The heuristic combination used was simple-
deficit-highest-wave-pre-0.

We do not have data describing the sizes of the branches maintained by the pseudoflow
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solver. However, we can look at the average number of pushes per merger to approximate

the branch sizes involved. A larger number of pushes per merger would tend to indicate

larger branches. The average number of pushes per merger for each instance of rlg-long

and rlg-xwide is shown below in Table 5.8.

a20c20 a20c80 a80c20 a80c80

seed long xwide long xwide long xwide long xwide

10 9.14 1.34 11.91 1.61 8.64 1.58 12.36 1.80

20 8.99 1.36 9.30 1.61 9.23 1.59 13.01 1.80

30 9.31 1.34 9.89 1.60 9.88 1.57 12.96 1.80

40 8.84 1.33 12.84 1.59 8.99 1.57 13.89 1.80

Table 5.8: Average number of pushes per merger for rlg-long and rlg-xwide.

The extra-wide graphs produced smaller branches than the rlg-long graphs. However,

the data in Table 5.7 show that this did not significantly improve the performance of the

warm start technique. Therefore, we conclude that warm start is not necessarily hampered

by large branches.

Graph Size

Another pattern from the scheduling data experiments suggested that warm start performs

better on smaller graphs. To test this, we generated rlg-long and rlg-wide graphs with 213

nodes instead of the graphs with 215 nodes used above. The results are shown in Table 5.9

below.

For the rlg-long graphs, the warm start solver is almost always faster than iterative

solver on these smaller graphs. However, with the rlg-wide graphs, the performance is

mixed: in half the cases warm start runs faster, and in the other half it runs slower.

Therefore, we cannot conclude that warm start necessarily runs faster on smaller graphs.

Summary

In an effort to validate our observations from the scheduling graphs and to find additional

performance patterns, we generated a number of RLG graphs with parameters similar

to the scheduling graphs and tested the warm start solver on these generated graphs.

However, the experiments with the RLG graphs did not provide conclusive evidence to

support the hypotheses that warm start runs faster on either smaller or shorter graphs.
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RLG Long

a20c20 a20c80 a80c20 a80c80

seed warm iter ratio warm iter ratio warm iter ratio warm iter ratio

10 0.846 1.488 1.76 1.230 2.942 2.39 1.118 2.392 2.14 1.884 9.334 4.95

20 0.780 1.458 1.87 1.348 1.498 1.11 1.024 3.882 3.79 1.790 10.492 5.86

30 0.794 1.704 2.15 1.398 3.184 2.28 0.974 0.874 0.90 1.668 10.214 6.12

40 0.796 1.478 1.86 1.096 0.964 0.88 1.004 2.798 2.79 1.878 4.040 2.15

total 3.216 6.128 1.91 5.072 8.588 1.69 4.120 9.946 2.41 7.220 34.080 4.72

RLG Wide

10 0.750 1.012 1.35 1.334 1.156 0.87 1.086 1.204 1.11 1.976 1.354 0.69

20 0.708 1.032 1.46 1.282 0.974 0.76 1.060 1.284 1.21 1.866 1.158 0.62

30 0.702 1.036 1.48 1.182 0.994 0.84 0.866 0.998 1.15 1.694 1.030 0.61

40 0.746 1.088 1.46 1.346 1.052 0.78 1.222 1.302 1.07 2.002 1.552 0.78

total 2.91 4.17 1.43 5.14 4.18 0.81 4.23 4.79 1.13 7.54 5.09 0.68

Table 5.9: Performance on smaller RLG graphs (213 nodes). The heuristic combination
used was simple-deficit-highest-wave-pre-0.

Furthermore, we could not discern any patterns in the performance based on the number

of arcs that changed capacity or the magnitude of the changes.

5.6.3 Mining Data

We conducted the final tests using mining data based on the mine1 synthetic mining

instance. Because we did not concatenate the data file as we did in Chapters 3 and 4,

the file contained only 54,000 blocks. Initially, we tested a moderate number of variations

of parameters controlling the number of blocks that changed and the magnitude of the

changes. We used only a single, default random number seed. The result are shown in

Table 5.10.

Instance warm iter ratio

a10c20 10.56 15.62 1.48

a20c50 11.16 15.01 1.34

a50c20 10.21 15.36 1.50

a50c50 9.65 15.04 1.56

a20c100 11.93 16.15 1.35

total 53.51 77.18 1.44

Table 5.10: Performance for warm start and iterative solvers on mining data (54,000
blocks). Random instances were generated from a single, default random number seed.
The heuristic combination used was simple-const-highest-lifo-pre-0.

These data suggest that the warm start technique does well in all cases with the
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mining data. To verify this, we selected two parameter values, and generated more random

instances using specified random number seeds. The results are shown in Table 5.11.

a20c50 a50c20

seed warm iter ratio warm iter ratio

10 18.24 15.52 0.85 17.45 15.32 0.88

20 17.69 14.33 0.81 16.11 14.84 0.92

30 18.56 15.61 0.84 16.33 15.91 0.97

40 18.38 15.35 0.84 16.13 15.23 0.94

total 72.87 60.81 0.83 66.02 61.30 0.93

Table 5.11: Performance for warm start and iterative solvers on mining data (54,000
blocks). Random instances were generated using the specified random number seed. The
heuristic combination used was simple-const-highest-lifo-pre-0.

The results for this case are uniformly bad: warm start never matches the performance

of the iterative solver. Therefore, the overall results for the warm start technique applied

to the mining data are mixed, just as it was for the scheduling and RLG instances.

5.7 Summary

In this chapter we presented a new warm start algorithm for use with the pseudoflow

algorithm. The technique allows us to solve a series of problem instances where the

structure of the graphs is identical, but the capacities of the arcs vary in arbitrary ways

that are not controlled by a parameter value. We use the solution from one instance as

the basis for the initial, normalized forest to solve the next instance in the series.

The experimental results are inconclusive. In some cases, the warm start algorithm

performs better than solving each instance from scratch. However, in other instances it

performs worse than solving the instances from scratch. We were unable to discover any

consistent explanations or patterns to reliably describe the conditions under which warm

start works well or poorly.
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Pseudoflow Example

In this appendix, we provide an example of the execution of the first phase of the pseud-

oflow algorithm on a simple graph.

We will start with the initial graph shown in Figure A.1. The algorithm begins by

saturating the arcs out of the source and also the arcs into the sink. This creates nodes

with positive excess next to the source and nodes with negative excess next to the sink, as

shown in the figure. We call nodes with positive excess strong and nodes with non-positive

excess weak. Nodes that are in the interior of the graph without arcs to either the source

or the sink will have zero excess.
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Figure A.1: The initial example graph, and (b) the initial excess and deficit on the nodes.

The algorithm proceeds by sending positive excess from strong nodes to weak nodes

along the arcs of the residual graph until no more excess can be sent.

Each iteration begins by finding an arc in the residual graph with positive residual

capacity between a strong node and a weak node and then performing a merger. Our

initial merger will be from u (strong) to v (weak). We call the arc (u, v) a merger arc.

The merger creates a branch where u is a child of v. The algorithm actually works

with branches rather than individual nodes. Single nodes are simply minimal, singleton

134
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branches.

The algorithm requires that branches have excess or deficit only at the root. To restore

this property, we attempt to send all five units of the excess from u to v along the merger

arc (u, v). In this case, there is sufficient capacity on the arc to send the entire excess

of u to v. After pushing the excess, there are two units of residual capacity from u to v

and five units back from v to u. The excess of u is now zero, and the excess v is positive

two, which is the net of the excess of u and the original deficit of v. This simple merger

is shown in Figure A.2.

Figure A.2: Simple merger between nodes u and v. (a) node u becomes a child of v, and
(b) all of the excess from u is pushed to v.

Because the positive excess of u exceeded the deficit of v, the root of the combined

branch has positive excess, so we call it strong, just as we did with the single node. We

refer to every node in a strong branch as being strong. For weak branches, if the root has

non-positive excess, the branch and all nodes in it are called weak.

Notice that the total number of branches has decreased as a result of the merger—a

strong branch and a weak branch have been replaced by one strong branch.

Now, the goal of the algorithm is to find a merger arc from any strong branch to any

weak branch. We examine all arcs in the residual graph looking for an arc with positive

capacity from a strong node to a weak one. The strong node and the weak node involved

in a merger need not be the roots of their respective branches.

To continue our example, we have a residual arc from our original node u to node w.

We begin the merger by rehanging the strong branch from u, which makes it the root of

the branch, and v becomes a child of u. This has reversed the parent-child relationship

between u and v, but the residual capacities have not changed, even though we have

inverted the branch. Then, we make u a child of w and attempt to push the two units of

the excess from v (the former strong root) up to u and across to w. If w were not the root
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of the weak branch, we would attempt to push the excess all the way up to the root of

the weak branch. In this case, the two units of excess from v is less than the three units

of deficit at w, so the merged branch is now weak. See Figure A.3.

Figure A.3: More complex merger between nodes u and w. (a) the strong branch is rehung.
(b) u is made a child of w. (c) The excess from v is pushed to w.

Our example so far has assumed that there is sufficient capacity in the residual network

to push the excess from the root of the strong branch all the way to the root of the weak

branch. However, this need not be the case. In the next iteration (Figure A.4), we will

merge node x, which has five units of excess, to node v. As usual, we make x a child of v

and attempt to push all of the excess to the weak root w.

Figure A.4: A merger between x and v with a split operation. (a) x becomes a child of v.
(b) five units of excess are pushed from x to v, but only three units can be pushed from
v to u. The branch must be split (c) creating a new strong branch with root v with two
units of excess. (d) The rest of the excess is pushed from u to w, making it strong.

We can push the excess from x to v, but there is insufficient capacity to push all of

the excess from v to u. So, we push what we can, three units, which leaves v with two
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units of excess and u with three units. We have saturated the arc (u, v), so we will split

the branch. This creates a new strong branch with root v which has positive excess equal

to the amount of excess that we could not push, two units. We will continue pushing the

excess that was pushed to u (three units) towards the weak root. In this case there is

sufficient capacity; however that need not be the case. While pushing the flow, the branch

can be split multiple times. If the amount of excess exactly matches the residual capacity

of the edge, we split the branch.

This merger process continues until we can find no merger arc between a strong node

and a weak one. At this point, the first phase of the pseudoflow algorithm is done.

However, the pseudoflow is not a feasible flow because the flow balance constraints are

violated for the roots of the branches. The pseudoflow can be converted into a feasible

flow by a simple process based on flow decomposition that effectively returns excess to the

source and deficits to the sink.
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