
Introducing Application Design and Software Engineering Principles in
Introductory CS Courses: Model-View-Controller Java Application

Framework

Scot F. Morse
Division of Computer Science
Western Oregon University

345 N. Monmouth Ave.
Monmouth, OR 97361

morses@wou.edu

Charles L. Anderson
Division of Computer Science
Western Oregon University

345 N. Monmouth Ave.
Monmouth, OR 97361

ABSTRACT
This paper presents an approach for introducing application design and software
engineering principles early in the CS curriculum. When courses are taught in a
language such as Java, programming labs may involve writing a complete application
or applet. In these cases it is possible to introduce notions of software engineering
principles alongside a topic such as object-oriented design. This paper presents a
simple application framework in Java that follows a Model-View-Controller design
and that can be used in introductory and core courses to introduce elements of
software engineering. Although it is focused on applications having a graphical
interface, it may be modified to support command-line programs. The application
framework is presented in the context of development tools Apache Ant and JUnit.

1. INTRODUCTION AND MOTIVATION

Computer Science curriculums frequently include courses in Software Engineering
and Application Design. Often these courses are offered late in a student’s program,
long after the basic foundations of programming and algorithmic problem solving
have been covered. While many of the formal topics in Software Engineering are
rightly covered in an advanced setting, teaching good application design principles
and practices need not wait for upper-division courses. With the aid of a simple
framework, issues of design, development, and testing can be introduced in a CS2
level course in a way that does not hinder its progress. In this paper the authors
present an application framework in the Java programming language that may be used
to teach students to organize the logic of their programs in ways that are easy to
understand, trace, expand, maintain, and test. The framework chosen follows the
highly successful Model-View-Controller (MVC) paradigm.

The impetus for the development of this framework and its trial use in introductory
CS courses was the conspicuous observation that students tend to follow the examples
given them in their textbooks. Textbook authors strive to present good programming
practices and examples, so the examples themselves are not the problem. Rather, the

problem comes when students are asked to write complex programs that go far beyond
the scope of the examples found in most textbooks. For example, in a data structures
course students may be asked to implement a particular data structure and then use it
in a corresponding algorithm in a fully functioning program (e.g. a stack used in a
postfix calculator application). Students may be successful implementing the core
functionality of the problem (the data structure and integral algorithm) but submitted
very poorly-written programs as a whole. When graphical user interfaces (GUI) were
a requirement of the assignment, students often wrote the entire program in a single
class file containing hundreds of lines of less-than-readable code – graphical objects
instantiated right next to the data structures, graphical layout code intermixed with
data management, and haphazard uses of static variables, instance variables, and
anonymous listeners. Students correctly followed good object oriented (OO)
principles in designing and implementing their data structures, but when it came to
designing their application, they had no previous experience or examples to draw
from. Introductory programming texts focus on principles of programming; data
structures texts focus on theory and implementation of data structures and algorithms.
Yet many popular texts also present GUI programs as examples, in a very limited
form. Page and space restrictions leave little room in these texts for a discussion of
good application design and simple software engineering principles. Students are left
to either follow these limited examples or develop a good framework on their own.
Experience shows few students do the latter.

This paper suggests that these important ideas can be presented in an introductory
setting (e.g. in the second quarter of an introductory programming course or the first
term of a data structures course) without hindering the development of the core ideas
of the course. A solution presented here is for the instructor to provide an application
framework for the students to use in their own programming projects. This is a
“skeleton” application that provides the structure for a functioning program. Students
are then required to use this framework to write their programming assignments.

There are many benefits of using a framework of this type. First, it shows the
students an example of good application design that complements principles of object
oriented design. Because software engineering has become a fundamental part of
many curriculums, the earlier students are exposed to the idea of engineering their
programs, the better. Second, this framework allows students to create rich graphical
programs while spending a maximum amount of time on the core ideas of the
assignment. Since all students are working from the same core framework, the
instructor can choose to provide a custom graphical interface class that students can
“plug-in” to their code without changes. Students may use it as is (with only the
definition of its public or package level members), enhance it, or extend it as they
wish. In a similar way, this framework shows how software development can work in
a team environment; they can write their own code without knowing the details of
another component. Third, a common framework assists in evaluation and grading
tasks. If the primary function of an assignment is the implementation of a data
structure, the instructor knows exactly where to look for it. It will not be obscured by
code unrelated to its function. In a similar manner, students will know exactly where
to look for important code in the instructor’s solutions after the assignment is over. In
addition, the framework enables unit testing to be carried out automatically, which
may be useful in assigning grades. Common tasks such as compilation, execution, file
management, and archiving (for submission) can also be automated easily with the

build tool Apache Ant [1]. Lastly, the framework may be presented in various levels
of sophistication – a very simple version for an introductory class or a more complex
version for advanced classes.

Drawbacks of using this framework center around the additional burden it places
on students. Requiring its use forces students to learn how it works at a point early in
the term, possibly reducing their focus on the content of the course. It is often difficult
for students to be suddenly immersed in another person’s code and be expected to
work productively. It is for these reasons that the framework is designed to be as
simple as possible and organized in a natural and readable fashion.

2. MODEL-VIEW-CONTROLLER PARADIGM

The Model-View-Controller (MVC) is a popular architecture for interactive
applications that was originally developed for use in Smalltalk systems [4]. It has
enjoyed considerable popularity in Java programs as Sun Microsystems has used it
extensively for the Swing GUI toolkit, servlets, and enterprise applications. The MVC
architecture is not limited to Java; MVC frameworks exist for many languages and
systems including Python, PHP, Microsoft ASP, and Apple’s Cocoa application
environment.

There are three major components in the MVC architecture:
• A Model contains the underlying data and methods of the application. This is

often referred to as the “business logic” of the application.
• A View contains a representation of the data in the model. This displays data

from the model based on the current state and may receive update notifications
when the data changes. The view is concerned with output to the user. The
view also displays the user interface components that receive input from users.

• A Controller connects the model and view and coordinates activities between
them. Based on user inputs, it determines which methods on the model should
be invoked and which view should display the updated data in the model. The
controller is responsible for processing input from the user.

Sometimes the view and controller are combined for simplicity or performance
reasons. Regardless of whether the view and controller are separate entities, the model
is always separate from the view. This leads to a number of desirable properties
including:

• The same set of business logic (a model) may be used with numerous different
views to provide different user interfaces for the same underlying application.
These could include web page display, traditional GUIs, or a web-services
interface.

• By separating the model from the view and controller, separate teams of
developers can work on each component, either serially or in parallel. In a
teaching environment, the instructor could provide a GUI to the students who
would be responsible for implementing the model.

• Automated test harnesses such as JUnit [2,5,7] can be used to perform
extensive unit testing on the business logic without tedious testing at a GUI.
This reduces or eliminates the need for (often expensive) automated GUI
testing tools, and it makes debugging simpler: if the model is known to be
correct (based on unit tests), incorrect output must be due to errors in the view
(or controller). For students, unit testing results in much higher quality
programs because the programs have been exhaustively tested.

To better understand the roles of the different objects in the MVC architecture,
consider an application for performing certain tasks in a payroll system like entering
time records for employees. At the end of a week, a paycheck needs to be generated
for each employee, and taxes need to be computed and withheld. In this example, the
model would contain a method to specify number of hours worked by an employee in
a day or a week and would most likely store this information in a database. There
would be a separate method to generate a paycheck for a given employee, which
would probably call methods to look up tax tables in the database, compute the taxes,
and store information about the resulting paycheck in the database. Notice that the
model is not concerned with where the input data comes from or how the output data
is displayed. Also note that only the model knows how to perform the computations,
and only the model is concerned with interacting with the database.

The view displays the data to the user. In a GUI application, the view may include
text boxes to display data or accept inputs. It may contain some type of tabular
display to show data for every employee. It may also include the ability to print the
paychecks or summary reports. If the application were web-based, the view would
consist of HTML elements like forms for input, tables for output and formatting, and
formatted text to display individual values.

The controller processes inputs from the user and determines which method on the
model should be invoked and which view should display the result. When the user
selects a GUI menu to enter employee timesheet data, the controller selects the proper
view to display the input fields. When the user clicks a button to submit an employee
time record, the controller calls the appropriate method on the model to cause the data
to be recorded in the database.

3. BASIC JAVA APPLICATION FRAMEWORK

A simple Java MVC framework has as its base a class containing the main method
and one class for each of the functional domains described above, appropriately
named: Main, Model, View and Controller.1 Figure 1 shows this relationship in a
UML diagram.

Fig. 1. UML diagram of top-level framework structure. The Controller maintains
a reference to both the Model and the View. There is no direct means of

communication between the Model and the View – the Controller manages all
communications at this level.

1 Actual class and interface names are in italics and are capitalized.

The Model class contains all the fundamental data and logic required by the
program while the View class contains all the graphical user interface components and
functionality. The Controller is the primary event handler that responds to events
generated by the user through the graphical components in the View. (For the
moment, there is no way for the Controller to respond to events generated in the
Model.) A Main class is used as the entry point for the program. It is responsible for
initializing the three objects.

This particular realization of the MVC paradigm is kept as simple as possible at
this point. As such, we intentionally separate the model and the view as much as
possible. The Model does not have a reference to either the Controller or the View.
Similarly, the View has no reference to the Controller or the Model. (This separation
should also be enforced by strongly discouraging static variables and methods in all
classes.) This is a simpler model than other MVC implementations because the Model
and View are treated as delegate objects of the Controller. They each perform their
own separate function independent of the other objects. In this way they are easier to
implement and can be written independently. As its name suggests, the Controller
manages the top level functioning of the program by responding to events and
“controlling” the Model and View. It uses them as it needs to in order to implement
the functionality of the program. At this point it is instructive to see how the
Controller typically works. Consider a calculator program. The Controller may
receive an event corresponding to “Enter” or “Evaluate” an expression. The View
holds the user input and the Model contains all the functionality for evaluating the
expression. The Controller may perform something like the following, in an
actionPerformed method handling the appropriate event, e.g.:

String answer = model.evaluatePostFixInput(
view.getInputExpression());

view.displayResult(answer);

From the perspective of the Controller there is no specification of how the View is
to obtain the input string from the user. There is likewise no knowledge of how the
Model carries out the computation. These details are left up to the individual classes.
However, each method must perform the required function and the Controller directs
the execution. This primary level of design teaches students about programming by
interface.

Next, as described in Figure 2, the details of this general framework are developed.
To solidify the separation of components in the framework, note that the three primary
classes (Model, View, and Controller) are placed in separate packages. The Model and
View are placed in their own packages (in Figure 3 named with the convention of
course.name.lab#) and now represent well defined, individual subsystems. The
Controller is placed one level higher, alongside the Main class.

Fig. 2. UML diagram of the basic MVC application framework. The Controller is
now an abstract class. Applications extend this as needed. In this case the top level
application controller is TopController, which overrides the base class methods as
necessary. Not shown is the fact that the View and Model are located in separate

packages.

For now, the Model class is alone in its own package. While often the most
important subsystem, the model has no further framework development at this point.
One must wait for a specific application to add classes in this area. (Later, under the
category of “advanced” features, functionality is added to the model subsystem.)

Figure 2 describes additions to the Controller subsystem. The Controller serves as
the listener object for application-wide events and so must implement a number of
listener interfaces. The term “application-wide” is used here to distinguish between
events that apply to the application as a whole (Open, Save, or Quit menu items) and
to those events local to a particular graphical component (a KeyEvent from a text
component that needs to be handled locally, in the View, and has no effect on other
subsystems). Local events often should be handled as close to their sources as
possible. Implementing many interfaces introduces numerous, often empty, methods.
This presents a good case for inheritance. The Controller becomes an abstract class
that provides stub implementations of the interface methods. A new concrete class,
here called TopController, extends Controller and overrides listener methods as
needed. (For a discussion of this design pattern in C++ see reference [6].) It inherits
references to the Model and the View classes. Using inheritance in this case makes the
Controller class reusable and also simplifies the actual TopController class. Students
need not sort through many empty listener methods to find the one they need.

One utility class is added to the top level package: Constants. This class is meant
to be used for application-wide (often) constant values. Uses can range from default
sizes and colors to important initialization values. Its most common use is to hold

constants that identify ActionEvents. Since the graphical components are in the view
subsystem (buttons, menu items, ...) and the listener is in the TopController, there is
no direct way to identify the source of an event (by reference), unless the data
members of the View are given public visibility. In order to maintain good
encapsulation in the subsystems, it is suggested to keep members with package or
private visibility in all subsystems, but link events to objects using string constants.
This is implemented by specifying a constant as the ActionCommand of the graphical
component:

// In the view subsystem
JButton button = new JButton(“OK”);
button.setActionCommand(Constants.OK_EVENT);

Then, when the event is handled in the TopController, only the following is
necessary to identify the event and its source:

// In the TopController; e is an ActionEvent
String command = e.getActionCommand();
if(command.equals(Constants.OK_EVENT))
{ ... }

The TopController can then respond to the event by delegating work to the Model
then telling the View to update itself.

The view subsystem can now be filled out. Since the framework presented here is
the GUI version, the View must be set up to at least handle a window and some menus.
Aside from a constructor and possibly a GUI setup method, the View needs the ability
to register a listener. The setListener method serves this purpose and accepts a
reference to a Controller object. It is in this method that graphical components may
add the TopController as a listener. This public method is invoked as soon as it is
determined which TopController is to serve as the controller for that view. When
there is only one, as is the case in this paper, this method can be invoked from either
the main method or the TopController (either through its constructor or the general
purpose initView method, which is used to direct initialization of the View upon
startup of the application). It is important to note that the setListener method does not
violate the separation between the view and model subsystems. The View is passed a
reference to “its” Controller; however, it cannot obtain a reference to the Model
because of visibility restrictions. A typical view subsystem is shown in Figure 3.

Fig. 3. UML diagram of view subsystem.

The View class serves as the entry point to this subsystem. The View owns a
window (JFrame), a Menus class (which manages the various menu-related objects),
and a MainPanel (JPanel), which contains the application’s main window graphical
layout. It is straightforward to keep graphical components and their layouts within the
View class (or a class extending JFrame). The approach of having a custom JPanel
class is useful when the instructor wishes to give students the GUI for the program.
The instructor writes the MainPanel class (with its necessary setListener method) with
the entire GUI layout for the content area of the main window. Students can then
simply replace the default MainPanel class with the custom one. No further changes
are necessary since the View is already set up to place a MainPanel object in the
content pane of the top level window.

It is instructive at this point to trace the application start-up. The Main class holds
the main method, which instantiates the trio classes Model, View and Controller.

public static void main(String[] args)
{
 Model model = new Model();
 View view = new View("Generic Application");
 Controller controller = new TopController(model,view);
 view.setListener(controller);
 controller.initView();

 view.setLocationSize(100, 100, 700, 433);
 view.makeVisible();
}

The Model and View must be instantiated first. References to these objects are then
passed to the constructor for the TopController object. This forms the one-way links
between the Controller and the two subsystems. At this point nearly all the setup has
been completed in each subsystem. All graphical components have been instantiated
(but not displayed) in the view and all data related objects set up in the model. In
applications that use the file system or a database, it is at this point that the Model may
acquire access to external resources. Handling exceptions at this point is easy –
instantiation of the Model and/or View could be placed into a try-catch block which
exits the application appropriately upon failure. A further enhancement could be that
the Model must be successfully instantiated before the View is created. After the
TopController is instantiated, it is necessary to ensure that it is registered as the
listener object for any components in the View, hence the setListener method call. At
this point the View has only been set up in a default state, unaware of the state of the
Model. To properly initialize it with the Model, the initView method is invoked on the
TopController object. This enables the controller to properly initialize the View (or
indeed the Model as well) before the application has been made visible to the user.
Finally, once all application objects have been instantiated and initialized, the primary
GUI can be placed on the screen accordingly and made visible to the user.

4. MORE ADVANCED EXAMPLES

Section 3 detailed the implementation of a basic version of a MVC Java
application. It is enough to use as a framework for a range of programs in
introductory courses, yet is sufficiently easy to understand that using it should not
hinder the core material presented in the course. There are, however, significant
additions that can be made to the framework to improve its design and enhance
functionality.

A first addition is to enable communication from the Model to the Controller. As it
is designed above, there is no way for the Model class to signal the Controller that it
needs attention. This type of situation can appear frequently in programs that execute
data processing in multiple threads (located in the model subsystem). The Model may
create a worker thread to process data at the request of the Controller. When finished,
it may need to notify the Controller it is completed and that the View may need to be
updated. This functionality can easily be implemented by using the Observer pattern
[3] realized in the Java Observable class and Observer interface in the java.util
package; the Model extends Observable, and the Controller implements Observer.
The Model notifies the Controller through the setChanged and notifyObservers
methods. The Controller responds through the update method, which receives a
reference to the Observable and an arbitrary message.

Another enhancement to the framework addresses the event handling model itself.
ActionEvents comprise a large fraction of the events processed by a typical GUI
program. Even a simple program may have a half dozen or more menu items and
several buttons. This requires there to be a dozen or more event constants handled in
the actionPerformed method in the TopController. Events are identified by strings
and so the event handling is often performed in large nested if-else statements. One

can see this exposes a fault in the design as the application scales up in size. Even an
application with twenty distinct events would be messy to maintain. A solution to this
problem associates an object with each event type. This is commonly known as the
Command pattern [3]. Each event action has an associated Command object, which
contains the code to handle the event. The event handling framework (in the
Controller) extracts these Command objects out of a hash table using its event string
constant as a key. The framework then invokes the event handling method without
needing to know what event it is. Command objects are easily reused for similar
operations (Open menu item and Open toolbar button). Figure 4 shows how this
pattern can be incorporated into the current framework.

Fig. 4. Integration of the Command pattern into the ActionEvent handling
framework.

The Controller has a HashMap object which it uses to store Command objects (in
the registerCommand method, where they are associated with the constant string key).
Users extend the Command class to implement a “Commander” object, one for each
action event to be handled. In Figure 4 two common implementations are shown –
one to handle Quit events and one to handle requests for About events. These
implementations must provide a constructor and a commandExecute method. The
commandExecute method will be invoked automatically by the actionPerformed
method in the Controller as follows:

public void actionPerformed(ActionEvent e)
{
 String strID = e.getActionCommand();
 Command cmder = (Command) hashMap.get(strID);
 if (cmder != null)

cmder.commandExecute();
 else

System.out.println("Command not implemented.");
}

In addition to the framework enhancements mentioned above, it is easy to add
functionality to the view subsystem. Examples include additional windows (views)

and classes for: an About dialog, a Status bar, a Log class (to show debugging
information in customized ways), or a component showing memory usage or garbage
collection details. All these additions can be made as separate classes in the view
subsystem in ways that do not increase the complexity of the framework. They can be
plugged in as desired.

5. DEVELOPMENT TOOLS AND TESTING

When the file and package structure is common between the instructor and all
students it becomes possible to use popular development tools to simplify common
tasks. One of these is the task of compiling and running applications. Many IDE’s
work flawlessly with the framework presented here. It is common, however, to
experience difficulties when the source code is in packages. The most common cause
is problems with path settings for the Java tools and the CLASSPATH used by java,
javac, jar and javadoc. These problems can be greatly reduced by using a build tool.
Apache Ant [1] is a build and development tool that is very powerful, easy to use,
cross-platform and free. In the context of this framework, Ant is especially useful in
that it works from a single XML build file. The instructor can write and distribute to
students a build file containing various “targets” which can be invoked to compile or
run programs, build JavaDoc files, create Jar archives, and many other tasks. Once
students install Ant, an assignment can be compiled by executing ant compileLab1
from the command line. Similarly an assignment may be compiled with
documentation and jar archives created automatically (and possibly submitted on a
shared filesystem) by executing a similar command.

Another benefit to the common framework is the ease of performing unit testing. A
tool like JUnit [2,5,7] may be used by students to test their work and by instructors to
grade assignments. The instructor may write a test case (a single java class file) and
distribute it with the assignment. Students may then evaluate their code using the
provided tests or add new tests themselves. Using JUnit within this framework
requires students, at most, to change a single import statement in the test class. This
form of testing has proven very effective in data structures courses, where students
spend most of their time working in the model. The unit testing class can fully
exercise their data structure implementations and also evaluate their uses in the
application. In terms of grading, unit testing easily catches programming errors
missed by instructors grading source code or manually testing code by running the
final program.

CONCLUDING COMMENTS

When first presented with this framework, students typically respond negatively.
They view it as additional work with unnecessary complications. Introductory
students often have not written complicated enough programs to see the benefits
afforded them by a well-engineered application. Typically, students are well adjusted
after two assignments. Many continue to use it in future courses and find the
framework beneficial.

When students do struggle with the framework, a common practice is to bypass it.
One way to do this is to make most variables static. Then, when working in the view,
they can directly access the data in the model. While accessing data in the model from
the view is not always a bad practice (many MVC architectures provide a link directly

from the view to “its” model), in student programs it often results in members that
must be declared public. In typical student programs, there is no need for this
functionality, and the separation between the view and the model can be preserved.

A tutorial for students describing this framework in greater detail is present on the
author’s (Morse) website. Source code for the framework and examples of programs
using it are also available. The tutorial can be reached by following links from
http://www.wou.edu/~morses.

REFERENCES

[1] Apache Ant website, http://ant.apache.org/
[2] Barriocanal, E. G., Urban, M-A. S., Cuevas, I. A. and Perez, P. D. 2002. An

Experience in Integrating Automated Unit Testing Practices in an
Introductory Programming Course. SIGCSE Bulletin 34, 125-128.

[3] Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides, John 1995.
Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley.

[4] Krasner, Glenn E., Pope, Stephen T. 1988. A cookbook for using the model-
view controller user interface paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, 1(3), 26-49.

[5] JUnit website, http://www.junit.org
[6] Milewski, Bartosz 2001. C++ In Action: Industrial Strength Programming

Techniques, Addison-Wesley.
[7] Olan, Michael 2003. Unit Testing: Test Early, Test Often. The Journal of

Computing in Small Colleges 19, 319- 328.

