
Experiences with Extension Programming and Scripting in Python

Charles Anderson
IEOR Department, UC Berkeley

cander@ieor.berkeley.edu

Abstract

Our experiences interfacing Python with optimization
software are presented. The same work was done us-
ing extension programming and scripting. Due to the
nature of the C libraries we were using, we found
problems related to memory corruption and C name-
space collisions when we used the libraries as Python
extensions. For our application and the software we
are interfacing to, we found that using the libraries as
standalone programs connected via Python scripting
was a better way to use the optimization codes via
Python.

1 Introduction

We are developing a toolbox or workbench for re-
searchers in the field of Operations Research. We want
to build a simple environment that can be used by re-
searchers that does not require programming in C. It
should be possible to add new tools to the toolbox with
little or no C programming. We need to support new
file formats easily. Ideally, we would also like to
make this available with multiple user interfaces:
script files, command line, WWW, window systems
such as X-Windows.

Obviously, Python is a good choice. The syntax is
easy to learn. There are a large number of existing
libraries. It can be easily extended to add new func-
tionality written in C or Python. The interpreted na-
ture makes for very rapid development, and program-
mers are freed from low-level, error-prone details such
as memory management.

Given that these solver codes must be written in C (or
Fortran) for performance, our first impulse was to use
extension programming where we added a Python in-
terface to existing C code via some C-language glue.
We tried this, and although it worked, we encountered
some problems that made this a less than ideal solu-
tion.

Our second implementation was based on simpler
ideas of creating Python wrappers around existing ap-

plications and files. At the core, these are like more
traditional scripts such as shell scripts; they execute
programs to read and write files. However, we encap-
sulate these details to create a friendlier, object-
oriented environment.

Our contribution is an experiment in which we inte-
grated tools using both extension and script program-
ming. Due to the nature of the software we were
working with, we found scripting to be more effective
than extension programming.

2 Background

Our main work is in the field of combinatorial optimi-
zation. Our particular area of research is known as
Network Flows [AMO93]. The basic problems to be
solved are fairly easy to explain, especially to people
with even the most basic knowledge of graph theory.
For example, a maximum flow problem involves a
network or graph of nodes connected with arcs1. Each
arc has a maximum capacity. The objective is to push
as much flow from a source node through the network
to a sink node without exceeding the arc capacities and
without leaving any surpluses or deficits at any nodes.
A physical example would be moving fluid or gas
from one location to another through a network of
pipelines. Sometimes we may work with sub-
problems of network flows, and other times we may
use more general techniques such as linear program-
ming.2

For network flow research, we have the following en-
tities:

• Problem Instances are instances of problems we
wish to solve

1 The following terms are often synonymous and used
interchangeably: network/graph, arc/edge, and
node/vertex.
2 For the remainder of the paper, we will assume that
we are only working with network flow problems.

• Problem Generators are used to create random
instances to test with

• Solvers are the optimization software used to
solve instances

• Translators transform an instance from one for-
mat to another

• Solutions are the result of a solver working on an
instance

• Validators are code to compare solutions or to
validate that solutions are correct

The figure below shows the relationships between
these entities:

Figure 1: Entities in the Toolbox

Often a user has one or two instances of a problem to
solve. Sometimes this is a trivial problem where the
user wants to try out a simple example or a student's
homework problem. In this case, having a simple,
interactive tool is very desirable. For more serious
work, we wish to solve fairly large instances with
thousands or tens of thousands of nodes where the
number of arcs is at least an order of magnitude larger.

Other times we wish to try multiple algorithms to
compare solutions or performance on one or more
benchmark problem instances that tend to be large to
create meaningful timing results. The algorithms
would be run on the same instance, but the instance
may be in different formats for the different solvers.
Regardless, a problem instance is typically read from a
file into memory, the solver computes a result and the
solution is written to another file

2.1 Problems Facing Researchers

There are many commercial and public domain soft-
ware packages to solve such problems. New algo-
rithms are published and often implemented by re-
searchers. The first problem is that often the imple-

mentations are not particularly high quality, especially
compared to commercial software packages. Another
problem is that although there are some standard for-
mats for problem instances, many tools have their own
input and output formats, as well as strange and some-
times non-obvious usage. The problems can be com-
pounded by ‘real world’ applications where the initial
data is not in a standard format used by any of the
tools but rather a format specific to the application.
Basically, we lack a uniform, high quality set of soft-
ware tools.

This Tower of Babel problem is exacerbated by steep
learning curves for some tools. Often users are re-
quired to write C code to use the tools, and few re-
searchers are particularly proficient in C. All of these
obstacles discourage users, force them into using only
one tool because it is all they know, or cause them to
walk away from a given problem out of a feeling of
frustration especially if they just wanted a quick an-
swer to a simple problem.

2.2 Related Work
We first became aware of the concept of extension
programming in the context of Tcl [Oust94]. There
are many examples of extension programming proj-
ects. Dubois has been providing extensions to existing
physics codes with a custom language [Dub94] as well
as with Python [YDM96]. Commercial products such
as Matlab also provide a high-level script language to
high performance implementations of matrix manipu-
lation code. Matlab can be extended by writing scripts
or linking in C or Fortran code.

Shell scripts [Prat85] are an old idea to coordinate the
execution of programs and link their input and output
streams together. The beauty of command pipelines is
often held up as an example of software reuse technol-
ogy that actually works [Cox86]. Our work creates
higher level abstractions on top of programs and files.

The Expect extension [Lib90] to Tcl provides a useful
facility to control interactive programs from extended
Tcl scripts. The tools we use are not typically interac-
tive, but in some cases we may need to use such a tool,
in which case we can use the Python version of Expect
to interface with the tool.

TkMan [Phel95] is an example of using an external C
program to perform compute-intensive tasks instead of
using extension programming. This is very much like
what we do, but we wish to create a framework in
which we can plug in many such programs rather than
just one or two that perform specific tasks.

Generator Solver Solution

Validator

Instance

Instance
Format A

Translator Instance
Format B

Another way to view this work is in terms of wrapping
‘legacy applications’ for use in new systems. Our ap-
plications are not necessarily old, but they do share
some common traits: existing code that cannot be re-
written to conform to a new environment, the desire to
maintain an arms-length relationship with the code,
and possibly even code that must run on dedicated
hardware.

3 Extension Programming

The initial project planned to put a Python front-end
onto libraries of existing code. This would allow re-
searchers to create or convert problem instances using
the higher level tools available to the Python pro-
grammer and then invoke a solver written in C. The
solution could then be analyzed or saved from the Py-
thon environment. A casual user would never have to
write C code, and someone wishing to extend the tool-
kit would have to write a minimum of glue-code in C,
but this code would only have to be written once.

We wanted to move the I/O functions from C code to
Python where it can be much easier to read and write
various strange file formats. Given M solvers and N
file formats, we wanted to change the problem of sup-
porting all file formats for all solvers from MN soft-
ware tasks to M+N tasks.

It seemed the key was to develop a common represen-
tation of problems (i.e. networks) to be shared between
the Python code and the solvers. We considered the
idea of some kind of least common denominator repre-
sentation for graphs that would be shared by all
solvers. This was quickly discarded because no one
data structure can be all things to all solvers, this
would only work in cases where we had the source
code for the solver, and it would involve significant
modification to the algorithms.

Our second idea was to use the common representation
at a layer above the solver codes. The Python code
would manipulate the common representation, the glue
logic would translate from the common representation
to the ‘native’ representation used by the solver, and
the solver would continue to use its original/native
representation. Similarly, results (output) would be
translated from the native representation to the com-
mon representation where they would be available to
the Python code.

The figure below shows the second design where the
glue code translates between the common and native
formats.

This common data structure was designed to be sim-
ple. The objective was to make it easy to translate
between the common structure and the various native
formats. It was never a requirement that this repre-
sentation be particularly efficient for implementing
algorithms. Therefore, we did not consider using more
sophisticated data structures such as the kjBuckets
package from Aaron Watters [Watt], but rather we
created a simple representation with an array of nodes
and an array of arcs. The simple interface is shown
below:

CgGraph()
Create a new, empty graph

getSource
setSource

Get or set the source node in the
graph

getSink
setSink

Get or set the sink node in the graph

addArc
getArc
numArcs

Add an arc, get an arc, or get the
number of arcs in the graph

getNode
setNode
numNodes

Add a node, get a node, or get the
number of nodes in the graph

Notice that the interface lacks methods to get all the
arcs into or out of a node or to get all of the neighbors
of a node. Those are the types of operations that a
graph data structure used for a solver would need, but
since this structure is not used directly by the solvers,
we do not have such operations.

We implemented the common graph representation
and adapted an existing maximum flow solver (called
GOLD [Bad91]) to work as a Python extension mod-

Graph Data Structure

Python Code

Glue 1

Native Repr 1

Solver 1

Glue 2

Native Repr 2

Solver 2

Figure 2: Relationships between the
representations and the solvers.

ule. Basically, the work involved replacing the file
I/O routines in the standalone version of GOLD with
fairly simple glue code to translate the common graph
representation.

Some of this work to interface the C code with Python
can be automated using a tool such as SWIG [Beaz96].
However, the bulk of the work involved developing
the code to translate between the common graph repre-
sentation and that used by GOLD. This type of trans-
lation code cannot be automated using a tool like
SWIG.

With our extended Python interpreter, we were able to
define graphs from Python by adding nodes and arcs,
and compute the maximum flow for a network. Al-
though this worked for simple test cases, we found
some problems during testing and made some obser-
vations based on the implementation.

• When the extension code was ported from
FreeBSD to SunOS, the extended Python interpreter
began crashing mysteriously, especially when in-
stances of the common graph were deleted after the
solver was run. After some effort, we found that the
GOLD solver contained a number of small bugs and
one major off-by-one array bounds error. This was
corrupting the heap in such a way that when running
the interpreter under SunOS it crashed, but it did not
crash under FreeBSD.

• This scheme requires two representations of the
graph be present in memory at the same time – i.e. it
doubles memory usage. During a translation phase,
both representations may be accessed simultaneously
meaning that we cannot assume one representation
would be paged out. This would lead to virtual
memory thrashing for large problem instances much
sooner than if we only had a single copy in memory.

• In the longer term, if we were to add more solvers,
it would become increasingly likely to have C-
language namespace collisions when linking together
multiple solvers. Although we can work around this
in cases where we have source code, it would be
very difficult to fix in cases where we only have a
binary library.

• Although the C programming was fairly easy once
we became familiar with extension programming for
Python, it still appeared that it would be rather
daunting for novice programmers who wanted to add
a new solver to the toolkit, especially since the
translation code cannot be automated with tools like
SWIG.

Basically, although this scheme worked for a single
solver (once the memory bugs were fixed), it seemed
that we would continue to have problems as we added
new solvers.

4 Wrapping and Scripting

Despite the many problems with our solver codes,
there were some useful characteristics. The solvers
were already available as standalone programs. Also,
the user's interaction with the solvers tends to be lim-
ited the to the beginning and end of the process be-
tween which the solver runs without user intervention.

Therefore, we began to look at using Python more as a
shell-scripting language. We would leave the solvers
as standalone programs and allow them to read and
write their own native file formats on disk. Then we
could use Python to develop file conversion filters and
as a tool for coordinating the activities.

We created a framework of base classes in Python to
represent solvers, instances, solutions, etc. These
classes interact to solve user problems. In addition to
base classes, there are sub-classes for particular solver
or file types. There are common operations and attrib-
utes for base classes as well as specific operations and
attributes for the sub-classes. For example, solvers all
have a solve method that works on an instance and
creates a solution. A sub-class might have an attribute
to control the verbosity of the output generated in the
solution, whereas others might not. Similarly, the out-
put of a solver, a solution instance, may contain data
specific to the algorithm that generated it in addition
to the information that would be common to all solu-
tions. A subset of the class hierarchy is shown in the
figure on the next page.

The Python classes we developed for the sub-classes
are user-friendly ‘handles’ to the real instances that are
typically represented in the file system. They pro-
vide a uniform look-and-feel for the disparate tools
and objects. We have a common graph representation
written in Python to facilitate translations. To convert
from one file format to another, the user can write
Python code to read the input format and build the
graph in memory. Then the internal representation can
be written out via more Python code into a file in an-
other format. Therefore, we only need to write M+N
translators rather than MN translators.

At the moment, the classes are completely imple-
mented in Python without any use of extensions. To
add a new solver to the toolbox, a user writes Python
code to sub-class an existing solver class and adds the
particular methods and attributes for the new solver. If
we found a solver that was reliable (and free of mem-
ory bugs), and if there were some strong reason to in-
clude it into an extended Python interpreter, there is
nothing in this architecture that precludes that. Like
any extension, it would be pretty seamless when
viewed from the Python code.

Obviously, external solvers imply the need to create a
new process to run the solver. Since most of our
problems are fairly large and require tens of seconds,
tens of minutes, or more to solve, the overhead of a
new process is minimal.

Below are some examples of using generators, solvers,
solutions, and instances.

create an instance
import GeneratorPrograms
mesh = GeneratorPrograms.Mesh()
mesh.numRows = 10
mesh.numCols = 20
mesh.capacity = 100
file = mesh.getDefaultFileName()
inst = mesh.createFile(file)
solve it with two solvers
import Solvers
dinic = Solvers.Dinic()
fifo = Solvers.Fifo()
soln1 = dinic.solve(inst)
soln2 = fifo.solve(inst)

print info about the solutions
print 'Flow values:', \
 soln1.flowValue, soln2.flowValue
print 'Solving times:', \
 soln1.solveTime, soln2.solveTime
retrieve an instance from disk
import ProbInstance
inst = ProbInstance.getInstance \
 ('mesh-10-20-100.max')
print 'Instance dimensions:', \
 inst.numRows, inst.numCols

5 Status and Future Work

The toolbox currently includes the following compo-
nents:

• Five solvers - three for general maximum flow
and two for a mining application.

• Over a dozen generators - mostly for maximum
flow, but also a few mining problem generators.

• Three Problem Instance types and three Solution
types.

• Two Instance Translators.
• One Validator.

At the current time the software is still evolving rap-
idly, so the user community is limited to only a couple
researchers. Using a very early version of the frame-
work, we were able to find more errors in the GOLD
solver. We generated some problem instances, ran
GOLD, and used the Validator to verify the solution.
We found that it was violating some of the problem
constraints. Hence, we have stopped using GOLD and
no longer support it in the toolbox.

Figure 3: Generators, Instances, and Solvers

PrfSolver

verbosity

buildCmdLine()
createSolution()

Dinic HighestLabel Fifo

LGsolver

buildCmdLine()
createSolution()

Washington

createFile()

LineMesh

numRows
numCols
degree

Matching

verticiesPerSet
nodeDegree

MineGen

createFile()

Dimacs

getNumArcs()
getNumNodes()
getSource()
getSink()

Mining

getNumNodes()
getLayerIds()

MaxClosure

getNumNodes()
getNumArcs()

Generator

description
fileBase
argDescriptions

getArgs()
getDefaultFileName()

Solver

pathname
description

solve()

ProbInstance

pathName

getFileName()
getBaseName()

creates solves

Our current prototype uses a text terminal based inter-
face built from components in [Lutz96]. We plan to
develop a GUI, probably using TkInter to allow
browsing objects and tools. Using the toolbox from
the Web will require writing translators read and write
HTML – i.e. new sub-classes of Instance and Solution.
We plan a more general release once we have one of
these interfaces available.

Since the Python wrappers provide an arms-length
connection to the objects and tools, we plan to investi-
gate accessing tools and objects remotely over a net-
work. We are considering ILU [JS96] to control re-
mote tools and instances via a Python/ILU server run-
ning on the remote machine and an ILU client process
on the local machine. This will allow a researcher to
use the workbench on a personal workstation to con-
trol solvers running on ‘big iron’ machines or an entire
network of workstations (NOW) supercomputer clus-
ter.

Since some researchers start with problem instances in
Excel or wish to post-process solutions with Excel, we
would like to use the OLE/COM [Brock95] support in
PythonWin to build a bridge between Excel and the
solver workbench.

6 Conclusions

We have used Python to create a toolbox to bring to-
gether many existing optimization solver programs.
We first tried extension programming but met with
limited success. We encountered a number of prob-
lems mostly related to the type of software we were
attempting to interface with.

Fundamentally, there is nothing wrong with extension
programming, but it appeared that it would not scale
for our application. The problems are mostly related to
the eclectic collection of software we are trying to use:

• There is no common architecture to the software
tools – they are not a simple collection of APIs in a
well-designed library.

• The software comes from many sources, which
can lead to integration problems.

• We are attempting to interface to non-professional
software that may be buggy, and it is more apt to
have integration problems.

• Although the creation of C-language interface
logic can be automated via tools like SWIG, the bulk
of the interface involved translating graph represen-
tations which could not be automated.

Therefore, we fell back to more traditional shell-script-
like programming wherein the solvers are standalone
programs that are invoked to read and write problem
and solution data on disk. We created Python object
wrappers around these tools to provide an easy to use
interface.

Acknowledgements

Thanks to Eli Olinick whose travails were the initial
seeds of this project. Thanks to Mark Lutz for his Py-
thon examples that hammered home the concepts of a
framework. The author is indebted to the anonymous
reviewers for their comments and suggestions. And of
course, thanks to Guido for Python, without which this
would probably have been a Tcl project.

References

AMO Ahuja, Ravidra, Magnati, Thomas, and
Orlin, James. Network Flows: Theory,
Algorithms, and Applications. Prentice-
Hall, 1993.

Bad91 Badics, Tamas. An implementation of
Goldberg’s push-relabel algorithm.
Source code available at:
ftp://dimacs.rutgers.edu/pub/
netflow/maxflow/solver-5

Beaz96 Beazley, David, Using SWIG to Control,
Prototype, and Debug C Programs with
Python. In Proceedings of the Fourth
International Python Conference. 1996.

Brock95
Brockschmidt, Kraig. Inside OLE: Second
Edition. Microsoft Press, 1995.

Cox86
Cox, Brad. Objected Oriented Program-
ming: an Evolutionary Approach.
Addison-Wesley, 1986.

Dub94 Dubois, Paul. Making Applications Pro-
grammable. Computers in Physics, 11 (1)
1994, pp. 70.

JS96 Janssen, Bill and Spreitzer, Mike.. ILU
2.0aplha8 Reference Manual. XEROX
Palo Alto Research Center, March 1996

Lib90 Libes, Don, “expect: Curing Those Un-
controllable Fits of Interaction”. In Pro-
ceedings of the Summer Usenix Confer-
ence, pp. 183-192.

Lutz Lutz, Mark. Programming Python.
O’Reilly and Associates, 1996.

Oust94 Ousterhout, John. Tcl and the Tk Toolkit.

Addison-Wesley, 1994.
Phel95 Phelps, Thomas. “Two Years with

TkMan: Lessons and Innovation, Or Eve-
rything I Needed to Know about Tcl/Tk I
Learned from TkMan”, In Proceedings of
the 1995 Tcl/Tk Workshop, Usenix Asso-
ciation.

Prat85 Prata, Stephen. Advanced Unix – A Pro-
grammer’s Guide. Howard W. Sams &
Co., Inc, 1985.

Watt Aaron Watters, kjBuckets extension, Py-
thon contributed software,
http://www.python.org/ftp/
python/contrib/Math/
kjbuckets.tar.gz.

YDM96 Yang, Tser-Yuan, Dubois, Paul, and Mot-
teler, Zane. Building a Programmable
Interface for Physics Codes Using Nu-
meric Python. In Proceedings of the
Fourth International Python Conference.
1996

